Alabbasi, Abdulrahman, Ganjalizadeh, Milad, Vandikas, Konstantinos, Petrova, Marina.
2021.
On Cascaded Federated Learning for Multi-Tier Predictive Models. 2021 IEEE International Conference on Communications Workshops (ICC Workshops). :1–7.
The performance prediction of user equipment (UE) metrics has many applications in the 5G era and beyond. For instance, throughput prediction can improve carrier selection, adaptive video streaming's quality of experience (QoE), and traffic latency. Many studies suggest distributed learning algorithms (e.g., federated learning (FL)) for this purpose. However, in a multi-tier design, features are measured in different tiers, e.g., UE tier, and gNodeB (gNB) tier. On one hand, neglecting the measurements in one tier results in inaccurate predictions. On the other hand, transmitting the data from one tier to another improves the prediction performance at the expense of increasing network overhead and privacy risks. In this paper, we propose cascaded FL to enhance UE throughput prediction with minimum network footprint and privacy ramifications (if any). The idea is to introduce feedback to conventional FL, in multi-tier architectures. Although we use cascaded FL for UE prediction tasks, the idea is rather general and can be used for many prediction problems in multi-tier architectures, such as cellular networks. We evaluate the performance of cascaded FL by detailed and 3GPP compliant simulations of London's city center. Our simulations show that the proposed cascaded FL can achieve up to 54% improvement over conventional FL in the normalized gain, at the cost of 1.8 MB (without quantization) and no cost with quantization.
Zhang, Maojun, Zhu, Guangxu, Wang, Shuai, Jiang, Jiamo, Zhong, Caijun, Cui, Shuguang.
2021.
Accelerating Federated Edge Learning via Optimized Probabilistic Device Scheduling. 2021 IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :606–610.
The popular federated edge learning (FEEL) framework allows privacy-preserving collaborative model training via frequent learning-updates exchange between edge devices and server. Due to the constrained bandwidth, only a subset of devices can upload their updates at each communication round. This has led to an active research area in FEEL studying the optimal device scheduling policy for minimizing communication time. However, owing to the difficulty in quantifying the exact communication time, prior work in this area can only tackle the problem partially by considering either the communication rounds or per-round latency, while the total communication time is determined by both metrics. To close this gap, we make the first attempt in this paper to formulate and solve the communication time minimization problem. We first derive a tight bound to approximate the communication time through cross-disciplinary effort involving both learning theory for convergence analysis and communication theory for per-round latency analysis. Building on the analytical result, an optimized probabilistic scheduling policy is derived in closed-form by solving the approximate communication time minimization problem. It is found that the optimized policy gradually turns its priority from suppressing the remaining communication rounds to reducing per-round latency as the training process evolves. The effectiveness of the proposed scheme is demonstrated via a use case on collaborative 3D objective detection in autonomous driving.