Biblio
Efficiently searchable and easily deployable encryption schemes enable an untrusted, legacy service such as a relational database engine to perform searches over encrypted data. The ease with which such schemes can be deployed on top of existing services makes them especially appealing in operational environments where encryption is needed but it is not feasible to replace large infrastructure components like databases or document management systems. Unfortunately all previously known approaches for efficiently searchable and easily deployable encryption are vulnerable to inference attacks where an adversary can use knowledge of the distribution of the data to recover the plaintext with high probability. We present a new efficiently searchable, easily deployable database encryption scheme that is provably secure against inference attacks even when used with real, low-entropy data. We implemented our constructions in Haskell and tested databases up to 10 million records showing our construction properly balances security, deployability and performance.
The analysis of applied tasks and methods of entropy signal processing are carried out in this article. The theoretical comments about the specific schemes of special processors for the determination of probability and correlation activity are given. The perspective of the influence of probabilistic entropy of C. Shannon as cipher signal receivers is reviewed. Examples of entropy-manipulated signals and system characteristics of the proposed special processors are given.
In this research project, we are interested by finding solutions to the problem of image analysis and processing in the encrypted domain. For security reasons, more and more digital data are transferred or stored in the encrypted domain. However, during the transmission or the archiving of encrypted images, it is often necessary to analyze or process them, without knowing the original content or the secret key used during the encryption phase. We propose to work on this problem, by associating theoretical aspects with numerous applications. Our main contributions concern: data hiding in encrypted images, correction of noisy encrypted images, recompression of crypto-compressed images and secret image sharing.
Distributed Denial of Service attack is very harmful to software-defined networking. Effective defense measures are the key to ensure SDN security. An adaptive moving target defense scheme based on end information hopping for SDN is proposed. The source address entropy value and the flow rate method are used to detect the network condition. According to the detection result, the end information is adjusted by time adaptive or space adaptive. A model of active network defense is constructed. The experimental results show that the proposed scheme enhances the anti-attack capability and serviceability compared with other methods, and has greater dynamics and flexibility.
The natural redundancy in video data due to its spatio-temporal correlation of neighbouring pixels require highly complex encryption process to successfully cipher the data. Conventional encryption methods are based on lengthy keys and higher number of rounds which are inefficient for low powered, small battery operated devices. Motivated by the success of lightweight encryption methods specially designed for IoT environment, herein an efficient method for video encryption is proposed. The proposed technique is based on a recently proposed encryption algorithm named Secure IoT (SIT), which utilizes P and Q functions of the KHAZAD cipher to achieve high encryption at low computation cost. Extensive simulations are performed to evaluate the efficacy of the proposed method and results are compared with Secure Force (SF-64) cipher. Under all conditions the proposed method achieved significantly improved results.
Information security is winding up noticeably more vital in information stockpiling and transmission. Images are generally utilised for various purposes. As a result, the protection of image from the unauthorised client is critical. Established encryption techniques are not ready to give a secure framework. To defeat this, image encryption is finished through DNA encoding which is additionally included with confused 1D and 2D logistic maps. The key communication is done through the quantum channel using the BB84 protocol. To recover the encrypted image DNA decoding is performed. Since DNA encryption is invertible, decoding can be effectively done through DNA subtraction. It decreases the complexity and furthermore gives more strength when contrasted with traditional encryption plans. The enhanced strength of the framework is measured utilising measurements like NPCR, UACI, Correlation and Entropy.
Data have become an important asset for analysis and behavioral prediction, especially correlations between data. Privacy protection has aroused academic and social concern given the amount of personal sensitive information involved in data. However, existing works assume that the records are independent of each other, which is unsuitable for associated data. Many studies either fail to achieve privacy protection or lead to excessive loss of information while applying data correlations. Differential privacy, which achieves privacy protection by injecting random noise into the statistical results given the correlation, will improve the background knowledge of adversaries. Therefore, this paper proposes an information entropy differential privacy solution for correlation data privacy issues based on rough set theory. Under the solution, we use rough set theory to measure the degree of association between attributes and use information entropy to quantify the sensitivity of the attribute. The information entropy difference privacy is achieved by clustering based on the correlation and adding personalized noise to each cluster while preserving the correlations between data. Experiments show that our algorithm can effectively preserve the correlation between the attributes while protecting privacy.
In this paper, we introduce a two-step method for estimating the strength of user-created graphical passwords based on the eye-gaze behaviour during password composition. First, the individuals' gaze patterns, represented by the unique fixations on each area of interest (AOI) and the total fixation duration per AOI, are calculated. Second, the gaze-based entropy of the individual is calculated. To investigate whether the proposed metric is a credible predictor of the password strength, we conducted two feasibility studies. Results revealed a strong positive correlation between the strength of the created passwords and the gaze-based entropy. Hence, we argue that the proposed gaze-based metric allows for unobtrusive prediction of the strength of the password a user is going to create and enables intervention to the password composition for helping users create stronger passwords.
Defect prediction is an active topic in software quality assurance, which can help developers find potential bugs and make better use of resources. To improve prediction performance, this paper introduces cross-entropy, one common measure for natural language, as a new code metric into defect prediction tasks and proposes a framework called DefectLearner for this process. We first build a recurrent neural network language model to learn regularities in source code from software repository. Based on the trained model, the cross-entropy of each component can be calculated. To evaluate the discrimination for defect-proneness, cross-entropy is compared with 20 widely used metrics on 12 open-source projects. The experimental results show that cross-entropy metric is more discriminative than 50% of the traditional metrics. Besides, we combine cross-entropy with traditional metric suites together for accurate defect prediction. With cross-entropy added, the performance of prediction models is improved by an average of 2.8% in F1-score.
We report a an experimental study of device-independent quantum random number generation based on an detection-loophole free Bell test with entangled photons. After considering statistical fluctuations and applying an 80 Gb × 45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits/s, with a failure probability less than 10-5.
Todays analyzing web weaknesses and vulnerabilities in order to find security attacks has become more urgent. In case there is a communication contrary to the system security policies, a covert channel has been created. The attacker can easily disclosure information from the victim's system with just one public access permission. Covert timing channels, unlike covert storage channels, do not have memory storage and they draw less attention. Different methods have been proposed for their identification, which generally benefit from the shape of traffic and the channel's regularity. In this article, an entropy-based detection method is designed and implemented. The attacker can adjust the amount of channel entropy by controlling measures such as changing the channel's level or creating noise on the channel to protect from the analyst's detection. As a result, the entropy threshold is not always constant for detection. By comparing the entropy from different levels of the channel and the analyst, we conclude that the analyst must investigate traffic at all possible levels.
Covert channels are used to hidden transmit information and violate the security policy. What is more it is possible to construct covert channel in such manner that protection system is not able to detect it. IP timing covert channels are objects for research in the article. The focus of the paper is the research of how one can counteract an information leakage by dummy traffic generation. The covert channel capacity formula has been obtained in case of counteraction. In conclusion, the examples of counteraction tool parameter calculation are given.
The purpose of this research is to propose a new mathematical model, designed to evaluate the security of cryptosystems. This model is a mixture of ideas from two basic mathematical theories, information theory and game theory. The role of information theory is assigning the model with security criteria of the cryptosystems. The role of game theory was to produce the value of the game which is representing the outcome of these criteria, which finally refers to cryptosystem's security. The proposed model support an accurate and mathematical way to evaluate the security of cryptosystems by unifying the criteria resulted from information theory and produce a unique reasonable value.