Visible to the public Biblio

Found 1215 results

Filters: Keyword is Internet of Things  [Clear All Filters]
2018-02-02
Hossain, M., Hasan, R., Zawoad, S..  2017.  Trust-IoV: A Trustworthy Forensic Investigation Framework for the Internet of Vehicles (IoV). 2017 IEEE International Congress on Internet of Things (ICIOT). :25–32.

The Internet of Vehicles (IoV) is a complex and dynamic mobile network system that enables information sharing between vehicles, their surrounding sensors, and clouds. While IoV opens new opportunities in various applications and services to provide safety on the road, it introduces new challenges in the field of digital forensics investigations. The existing tools and procedures of digital forensics cannot meet the highly distributed, decentralized, dynamic, and mobile infrastructures of the IoV. Forensic investigators will face challenges while identifying necessary pieces of evidence from the IoV environment, and collecting and analyzing the evidence. In this article, we propose TrustIoV - a digital forensic framework for the IoV systems that provides mechanisms to collect and store trustworthy evidence from the distributed infrastructure. Trust-IoV maintains a secure provenance of the evidence to ensure the integrity of the stored evidence and allows investigators to verify the integrity of the evidence during an investigation. Our experimental results on a simulated environment suggest that Trust-IoV can operate with minimal overhead while ensuring the trustworthiness of evidence in a strong adversarial scenario.

Pocklassery, G., Kajuruli, V. K., Plusquellic, J., Saqib, F..  2017.  Physical unclonable functions and dynamic partial reconfiguration for security in resource-constrained embedded systems. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :116–121.

Authentication and encryption within an embedded system environment using cameras, sensors, thermostats, autonomous vehicles, medical implants, RFID, etc. is becoming increasing important with ubiquitious wireless connectivity. Hardware-based authentication and encryption offer several advantages in these types of resource-constrained applications, including smaller footprints and lower energy consumption. Bitstring and key generation implemented with Physical Unclonable Functions or PUFs can further reduce resource utilization for authentication and encryption operations and reduce overall system cost by eliminating on-chip non-volatile-memory (NVM). In this paper, we propose a dynamic partial reconfiguration (DPR) strategy for implementing both authentication and encryption using a PUF for bitstring and key generation on FPGAs as a means of optimizing the utilization of the limited area resources. We show that the time and energy penalties associated with DPR are small in modern SoC-based architectures, such as the Xilinx Zynq SoC, and therefore, the overall approach is very attractive for emerging resource-constrained IoT applications.

Marconot, J., Pebay-Peyroula, F., Hély, D..  2017.  IoT Components LifeCycle Based Security Analysis. 2017 Euromicro Conference on Digital System Design (DSD). :295–298.

We present in this paper a security analysis of electronic devices which considers the lifecycle properties of embedded systems. We first define a generic model of electronic devices lifecycle showing the complex interactions between the numerous assets and the actors. The method is illustrated through a case study: a connected insulin pump. The lifecycle induced vulnerabilities are analyzed using the EBIOS methodology. An analysis of associated countermeasures points out the lack of consideration of the life cycle in order to provide an acceptable security level of each assets of the device.

Cai, L. Z., Zuhairi, M. F..  2017.  Security challenges for open embedded systems. 2017 International Conference on Engineering Technology and Technopreneurship (ICE2T). :1–6.

Lots of traditional embedded systems can be called closed systems in that they do not connect and communicate with systems or devices outside of the entities they are embedded, and some part of these systems are designed based on proprietary protocols or standards. Open embedded systems connect and communicate with other systems or devices through the Internet or other networks, and are designed based on open protocols and standards. This paper discusses two types of security challenges facing open embedded systems: the security of the devices themselves that host embedded systems, and the security of information collected, processed, communicated, and consumed by embedded systems. We also discuss solution techniques to address these challenges.

Kan-Siew-Leong, Chze, P. L. R., Wee, A. K., Sim, E., May, K. E..  2017.  A multi-factors security key generation mechanism for IoT. 2017 Ninth International Conference on Ubiquitous and Future Networks (ICUFN). :1019–1021.

This paper introduces a multi-factors security key generation mechanism for self-organising Internet of Things (IoT) network and nodes. The mechanism enables users to generate unique set of security keys to enhance IoT security while meeting various business needs. The multi-factor security keys presents an additional security layer to existing security standards and practices currently being adopted by the IoT community. The proposed security key generation mechanism enables user to define and choose any physical and logical parameters he/she prefers, in generating a set of security keys to be encrypted and distributed to registered IoT nodes. IoT applications and services will only be activated after verifying that all security keys are present. Multiple levels of authorisation for different user groups can be easily created through the mix and match of the generated multi-factors security keys. A use case, covering indoor and outdoor field tests was conducted. The results of the tests showed that the mechanism is easily adaptable to meet diverse multivendor IoT devices and is scalable for various applications.

Modarresi, A., Sterbenz, J. P. G..  2017.  Toward resilient networks with fog computing. 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM). :1–7.

Cloud computing is a solution to reduce the cost of IT by providing elastic access to shared resources. It also provides solutions for on-demand computing power and storage for devices at the edge networks with limited resources. However, increasing the number of connected devices caused by IoT architecture leads to higher network traffic and delay for cloud computing. The centralised architecture of cloud computing also makes the edge networks more susceptible to challenges in the core network. Fog computing is a solution to decrease the network traffic, delay, and increase network resilience. In this paper, we study how fog computing may improve network resilience. We also conduct a simulation to study the effect of fog computing on network traffic and delay. We conclude that using fog computing prepares the network for better response time in case of interactive requests and makes the edge networks more resilient to challenges in the core network.

Modarresi, A., Gangadhar, S., Sterbenz, J. P. G..  2017.  A framework for improving network resilience using SDN and fog nodes. 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM). :1–7.

The IoT (Internet of Things) is one of the primary reasons for the massive growth in the number of connected devices to the Internet, thus leading to an increased volume of traffic in the core network. Fog and edge computing are becoming a solution to handle IoT traffic by moving timesensitive processing to the edge of the network, while using the conventional cloud for historical analysis and long-term storage. Providing processing, storage, and network communication at the edge network are the aim of fog computing to reduce delay, network traffic, and decentralise computing. In this paper, we define a framework that realises fog computing that can be extended to install any service of choice. Our framework utilises fog nodes as an extension of the traditional switch to include processing, networking, and storage. The fog nodes act as local decision-making elements that interface with software-defined networking (SDN), to be able to push updates throughout the network. To test our framework, we develop an IP spoofing security application and ensure its correctness through multiple experiments.

Rogers, R., Apeh, E., Richardson, C. J..  2016.  Resilience of the Internet of Things (IoT) from an Information Assurance (IA) perspective. 2016 10th International Conference on Software, Knowledge, Information Management Applications (SKIMA). :110–115.

Internet infrastructure developments and the rise of the IoT Socio-Technical Systems (STS) have frequently generated more unsecure protocols to facilitate the rapid intercommunication between the plethoras of IoT devices. Whereas, current development of the IoT has been mainly focused on enabling and effectively meeting the functionality requirement of digital-enabled enterprises we have seen scant regard to their IA architecture, marginalizing system resilience with blatant afterthoughts to cyber defence. Whilst interconnected IoT devices do facilitate and expand information sharing; they further increase of risk exposure and potential loss of trust to their Socio-Technical Systems. A change in the IoT paradigm is needed to enable a security-first mind-set; if the trusted sharing of information built upon dependable resilient growth of IoT is to be established and maintained. We argue that Information Assurance is paramount to the success of IoT, specifically its resilience and dependability to continue its safe support for our digital economy.

2018-01-23
Lu, Marisa, Bose, Gautam, Lee, Austin, Scupelli, Peter.  2017.  Knock Knock to Unlock: A Human-centered Novel Authentication Method for Secure System Fluidity. Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction. :729–732.

When a person gets to a door and wants to get in, what do they do? They knock. In our system, the user's specific knock pattern authenticates their identity, and opens the door for them. The system empowers people's intuitive actions and responses to affect the world around them in a new way. We leverage IOT, and physical computing to make more technology feel like less. From there, the system of a knock based entrance creates affordances in social interaction for shared spaces wherein ownership fluidity and accessibility needs to be balanced with security

Margolis, Joel, Oh, Tae(Tom), Jadhav, Suyash, Jeong, Jaehoon(Paul), Kim, Young Ho, Kim, Jeong Neyo.  2017.  Analysis and Impact of IoT Malware. Proceedings of the 18th Annual Conference on Information Technology Education. :187–187.
As Internet of Things (IoT) devices become more and more prevalent, it is important for research to be done around the security and integrity of them. By doing so, consumers can make well-informed choices about the smart devices that they purchase. This poster presents information about how three different IoT-specific malware variants operate and impact newly connected devices.
Hossain, M., Hasan, R..  2017.  Boot-IoT: A Privacy-Aware Authentication Scheme for Secure Bootstrapping of IoT Nodes. 2017 IEEE International Congress on Internet of Things (ICIOT). :1–8.

The Internet of Things (IoT) devices perform security-critical operations and deal with sensitive information in the IoT-based systems. Therefore, the increased deployment of smart devices will make them targets for cyber attacks. Adversaries can perform malicious actions, leak private information, and track devices' and their owners' location by gaining unauthorized access to IoT devices and networks. However, conventional security protocols are not primarily designed for resource constrained devices and therefore cannot be applied directly to IoT systems. In this paper, we propose Boot-IoT - a privacy-preserving, lightweight, and scalable security scheme for limited resource devices. Boot-IoT prevents a malicious device from joining an IoT network. Boot-IoT enables a device to compute a unique identity for authentication each time the device enters a network. Moreover, during device to device communication, Boot-IoT provides a lightweight mutual authentication scheme that ensures privacy-preserving identity usages. We present a detailed analysis of the security strength of BootIoT. We implemented a prototype of Boot-IoT on IoT devices powered by Contiki OS and provided an extensive comparative analysis of Boot-IoT with contemporary authentication methods. Our results show that Boot-IoT is resource efficient and provides better scalability compared to current solutions.

Ethelbert, O., Moghaddam, F. F., Wieder, P., Yahyapour, R..  2017.  A JSON Token-Based Authentication and Access Management Schema for Cloud SaaS Applications. 2017 IEEE 5th International Conference on Future Internet of Things and Cloud (FiCloud). :47–53.

Cloud computing is significantly reshaping the computing industry built around core concepts such as virtualization, processing power, connectivity and elasticity to store and share IT resources via a broad network. It has emerged as the key technology that unleashes the potency of Big Data, Internet of Things, Mobile and Web Applications, and other related technologies; but it also comes with its challenges - such as governance, security, and privacy. This paper is focused on the security and privacy challenges of cloud computing with specific reference to user authentication and access management for cloud SaaS applications. The suggested model uses a framework that harnesses the stateless and secure nature of JWT for client authentication and session management. Furthermore, authorized access to protected cloud SaaS resources have been efficiently managed. Accordingly, a Policy Match Gate (PMG) component and a Policy Activity Monitor (PAM) component have been introduced. In addition, other subcomponents such as a Policy Validation Unit (PVU) and a Policy Proxy DB (PPDB) have also been established for optimized service delivery. A theoretical analysis of the proposed model portrays a system that is secure, lightweight and highly scalable for improved cloud resource security and management.

Karam, R., Hoque, T., Ray, S., Tehranipoor, M., Bhunia, S..  2017.  MUTARCH: Architectural diversity for FPGA device and IP security. 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC). :611–616.
Field Programmable Gate Arrays (FPGAs) are being increasingly deployed in diverse applications including the emerging Internet of Things (IoT), biomedical, and automotive systems. However, security of the FPGA configuration file (i.e. bitstream), especially during in-field reconfiguration, as well as effective safeguards against unauthorized tampering and piracy during operation, are notably lacking. The current practice of bitstreram encryption is only available in high-end FPGAs, incurs unacceptably high overhead for area/energy-constrained devices, and is susceptible to side channel attacks. In this paper, we present a fundamentally different and novel approach to FPGA security that can protect against all major attacks on FPGA, namely, unauthorized in-field reprogramming, piracy of FPGA intellectual property (IP) blocks, and targeted malicious modification of the bitstream. Our approach employs the security through diversity principle to FPGA, which is often used in the software domain. We make each device architecturally different from the others using both physical (static) and logical (time-varying) configuration keys, ensuring that attackers cannot use a priori knowledge about one device to mount an attack on another. It therefore mitigates the economic motivation for attackers to reverse engineering the bitstream and IP. The approach is compatible with modern remote upgrade techniques, and requires only small modifications to existing FPGA tool flows, making it an attractive addition to the FPGA security suite. Our experimental results show that the proposed approach achieves provably high security against tampering and piracy with worst-case 14% latency overhead and 13% area overhead.
Ulz, T., Pieber, T., Steger, C., Lesjak, C., Bock, H., Matischek, R..  2017.  SECURECONFIG: NFC and QR-code based hybrid approach for smart sensor configuration. 2017 IEEE International Conference on RFID (RFID). :41–46.

In smart factories and smart homes, devices such as smart sensors are connected to the Internet. Independent of the context in which such a smart sensor is deployed, the possibility to change its configuration parameters in a secure way is essential. Existing solutions do provide only minimal security or do not allow to transfer arbitrary configuration data. In this paper, we present an NFC- and QR-code based configuration interface for smart sensors which improves the security and practicability of the configuration altering process while introducing as little overhead as possible. We present a protocol for configuration as well as a hardware extension including a dedicated security controller (SC) for smart sensors. For customers, no additional hardware other than a commercially available smartphone will be necessary which makes the proposed approach highly applicable for smart factory and smart home contexts alike.

2018-01-16
Zouari, J., Hamdi, M., Kim, T. H..  2017.  A privacy-preserving homomorphic encryption scheme for the Internet of Things. 2017 13th International Wireless Communications and Mobile Computing Conference (IWCMC). :1939–1944.

The Internet of Things is a disruptive paradigm based on the cooperation of a plethora of heterogeneous smart things to collect, transmit, and analyze data from the ambient environment. To this end, many monitored variables are combined by a data analysis module in order to implement efficient context-aware decision mechanisms. To ensure resource efficiency, aggregation is a long established solution, however it is applicable only in the case of one sensed variable. We extend the use of aggregation to the complex context of IoT by proposing a novel approach for secure cooperation of smart things while granting confidentiality and integrity. Traditional solutions for data concealment in resource constrained devices rely on hop-by-hop or end-to-end encryption, which are shown to be inefficient in our context. We use a more sophisticated scheme relying on homomorphic encryption which is not compromise resilient. We combine fully additive encryption with fully additive secret sharing to fulfill the required properties. Thorough security analysis and performance evaluation show a viable tradeoff between security and efficiency for our scheme.

Richardson, D. P., Lin, A. C., Pecarina, J. M..  2017.  Hosting distributed databases on internet of things-scale devices. 2017 IEEE Conference on Dependable and Secure Computing. :352–357.

The Internet of Things (IoT) era envisions billions of interconnected devices capable of providing new interactions between the physical and digital worlds, offering new range of content and services. At the fundamental level, IoT nodes are physical devices that exist in the real world, consisting of networking, sensor, and processing components. Some application examples include mobile and pervasive computing or sensor nets, and require distributed device deployment that feed information into databases for exploitation. While the data can be centralized, there are advantages, such as system resiliency and security to adopting a decentralized architecture that pushes the computation and storage to the network edge and onto IoT devices. However, these devices tend to be much more limited in computation power than traditional racked servers. This research explores using the Cassandra distributed database on IoT-representative device specifications. Experiments conducted on both virtual machines and Raspberry Pi's to simulate IoT devices, examined latency issues with network compression, processing workloads, and various memory and node configurations in laboratory settings. We demonstrate that distributed databases are feasible on Raspberry Pi's as IoT representative devices and show findings that may help in application design.

Craggs, Barnaby, Rashid, Awais.  2017.  Smart Cyber-physical Systems: Beyond Usable Security to Security Ergonomics by Design. Proceedings of the 3rd International Workshop on Software Engineering for Smart Cyber-Physical Systems. :22–25.

Securing cyber-physical systems is hard. They are complex infrastructures comprising multiple technological artefacts, designers, operators and users. Existing research has established the security challenges in such systems as well as the role of usable security to support humans in effective security decisions and actions. In this paper we focus on smart cyber-physical systems, such as those based on the Internet of Things (IoT). Such smart systems aim to intelligently automate a variety of functions, with the goal of hiding that complexity from the user. Furthermore, the interactions of the user with such systems are more often implicit than explicit, for instance, a pedestrian with wearables walking through a smart city environment will most likely interact with the smart environment implicitly through a variety of inferred preferences based on previously provided or automatically collected data. The key question that we explore is that of empowering software engineers to pragmatically take into account how users make informed security choices about their data and information in such a pervasive environment. We discuss a range of existing frameworks considering the impact of automation on user behaviours and argue for the need of a shift–-from usability to security ergonomics as a key requirement when designing and implementing security features in smart cyber-physical environments. Of course, the considerations apply more broadly than security but, in this paper, we focus only on security as a key concern.

Ozmen, Muslum Ozgur, Yavuz, Attila A..  2017.  Low-Cost Standard Public Key Cryptography Services for Wireless IoT Systems. Proceedings of the 2017 Workshop on Internet of Things Security and Privacy. :65–70.

Internet of Things (IoT) is an integral part of application domains such as smart-home and digital healthcare. Various standard public key cryptography techniques (e.g., key exchange, public key encryption, signature) are available to provide fundamental security services for IoTs. However, despite their pervasiveness and well-proven security, they also have been shown to be highly energy costly for embedded devices. Hence, it is a critical task to improve the energy efficiency of standard cryptographic services, while preserving their desirable properties simultaneously. In this paper, we exploit synergies among various cryptographic primitives with algorithmic optimizations to substantially reduce the energy consumption of standard cryptographic techniques on embedded devices. Our contributions are: (i) We harness special precomputation techniques, which have not been considered for some important cryptographic standards to boost the performance of key exchange, integrated encryption, and hybrid constructions. (ii) We provide self-certification for these techniques to push their performance to the edge. (iii) We implemented our techniques and their counterparts on 8-bit AVR ATmega 2560 and evaluated their performance. We used microECC library and made the implementations on NIST-recommended secp192 curve, due to its standardization. Our experiments confirmed significant improvements on the battery life (up to 7x) while preserving the desirable properties of standard techniques. Moreover, to the best of our knowledge, we provide the first open-source framework including such set of optimizations on low-end devices.

Zeitz, K., Cantrell, M., Marchany, R., Tront, J..  2017.  Designing a Micro-moving Target IPv6 Defense for the Internet of Things. 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI). :179–184.

As the use of low-power and low resource embedded devices continues to increase dramatically with the introduction of new Internet of Things (IoT) devices, security techniques are necessary which are compatible with these devices. This research advances the knowledge in the area of cyber security for the IoT through the exploration of a moving target defense to apply for limiting the time attackers may conduct reconnaissance on embedded systems while considering the challenges presented from IoT devices such as resource and performance constraints. We introduce the design and optimizations for a Micro-Moving Target IPv6 Defense including a description of the modes of operation, needed protocols, and use of lightweight hash algorithms. We also detail the testing and validation possibilities including a Cooja simulation configuration, and describe the direction to further enhance and validate the security technique through large scale simulations and hardware testing followed by providing information on other future considerations.

Kamaldeep, Malik, M., Dutta, M..  2017.  Contiki-based mitigation of UDP flooding attacks in the Internet of things. 2017 International Conference on Computing, Communication and Automation (ICCCA). :1296–1300.

As Internet of things (IoT) continue to ensconce into our homes, offices, hospitals, electricity grids and other walks of life, the stakes are too high to leave security to chance. IoT devices are resource constrained devices and hence it is very easy to exhaust them of their resources or deny availability. One of the most prominent attacks on the availability is the Distributed Denial of service (DDoS) attack. Although, DDoS is not a new Internet attack but a large number of new, constrained and globally accessible IoT devices have escalated the attack surface beyond imagination. This paper provides a broad anatomy of IoT protocols and their inherent weaknesses that can enable attackers to launch successful DDoS attacks. One of the major contributions of this paper is the implementation and demonstration of UDP (User Datagram Protocol) flood attack in the Contiki operating system, an open-source operating system for the IoT. This attack has been implemented and demonstrated in Cooja simulator, an inherent feature of the Contiki operating system. Furthermore, in this paper, a rate limiting mechanism is proposed that must be incorporated in the Contiki OS to mitigate UDP flood attacks. This proposed scheme reduces CPU power consumption of the victim by 9% and saves the total transmission power of the victim by 55%.

Ahmed, M. E., Kim, H..  2017.  DDoS Attack Mitigation in Internet of Things Using Software Defined Networking. 2017 IEEE Third International Conference on Big Data Computing Service and Applications (BigDataService). :271–276.

Securing Internet of Things (IoT) systems is a challenge because of its multiple points of vulnerability. A spate of recent hacks and security breaches has unveiled glaring vulnerabilities in the IoT. Due to the computational and memory requirement constraints associated with anomaly detection algorithms in core networks, commercial in-line (part of the direct line of communication) Anomaly Detection Systems (ADSs) rely on sampling-based anomaly detection approaches to achieve line rates and truly-inline anomaly detection accuracy in real-time. However, packet sampling is inherently a lossy process which might provide an incomplete and biased approximation of the underlying traffic patterns. Moreover, commercial routers uses proprietary software making them closed to be manipulated from the outside. As a result, detecting malicious packets on the given network path is one of the most challenging problems in the field of network security. We argue that the advent of Software Defined Networking (SDN) provides a unique opportunity to effectively detect and mitigate DDoS attacks. Unlike sampling-based approaches for anomaly detection and limitation of proprietary software at routers, we use the SDN infrastructure to relax the sampling-based ADS constraints and collect traffic flow statistics which are maintained at each SDN-enabled switch to achieve high detection accuracy. In order to implement our idea, we discuss how to mitigate DDoS attacks using the features of SDN infrastructure.

Bhunia, S. S., Gurusamy, M..  2017.  Dynamic attack detection and mitigation in IoT using SDN. 2017 27th International Telecommunication Networks and Applications Conference (ITNAC). :1–6.

With the advent of smart devices and lowering prices of sensing devices, adoption of Internet of Things (IoT) is gaining momentum. These IoT devices come with greater threat of being attacked or compromised that could lead to Denial of Service (DoS) and Distributed Denial of Service (DDoS). The high volume of IoT devices with high level of heterogeneity, magnify the possibility of security threats. So far, there is no protocol to guarantee the security of IoT devices. But to enable resilience, continuous monitoring is required along with adaptive decision making. These challenges can be addressed with the help of Software Defined Networking (SDN) which can effectively handle the security threats to the IoT devices in dynamic and adaptive manner without any burden on the IoT devices. In this paper, we propose an SDN-based secure IoT framework called SoftThings to detect abnormal behaviors and attacks as early as possible and mitigate as appropriate. Machine Learning is used at the SDN controller to monitor and learn the behavior of IoT devices over time. We have conducted experiments on Mininet emulator. Initial results show that this framework is capable to detect attacks on IoT with around 98% precision.

2018-01-10
Zhang, Y., Duan, L., Sun, C. A., Cheng, B., Chen, J..  2017.  A Cross-Layer Security Solution for Publish/Subscribe-Based IoT Services Communication Infrastructure. 2017 IEEE International Conference on Web Services (ICWS). :580–587.

The publish/subscribe paradigm can be used to build IoT service communication infrastructure owing to its loose coupling and scalability. Its features of decoupling among event producers and event consumers make IoT services collaborations more real-time and flexible, and allow indirect, anonymous and multicast IoT service interactions. However, in this environment, the IoT service cannot directly control the access to the events. This paper proposes a cross-layer security solution to address the above issues. The design principle of our security solution is to embed security policies into events as well as allow the network to route events according to publishers' policies and requirements. This solution helps to improve the system's performance, while keeping features of IoT service interactions and minimizing the event visibility at the same time. Experimental results show that our approach is effective.

Hamasaki, J., Iwamura, K..  2017.  Geometric group key-sharing scheme using euclidean distance. 2017 14th IEEE Annual Consumer Communications Networking Conference (CCNC). :1004–1005.

A wireless sensor network (WSN) is composed of sensor nodes and a base station. In WSNs, constructing an efficient key-sharing scheme to ensure a secure communication is important. In this paper, we propose a new key-sharing scheme for groups, which shares a group key in a single broadcast without being dependent on the number of nodes. This scheme is based on geometric characteristics and has information-theoretic security in the analysis of transmitted data. We compared our scheme with conventional schemes in terms of communication traffic, computational complexity, flexibility, and security, and the results showed that our scheme is suitable for an Internet-of-Things (IoT) network.

2017-12-28
Farris, I., Bernabe, J. B., Toumi, N., Garcia-Carrillo, D., Taleb, T., Skarmeta, A., Sahlin, B..  2017.  Towards provisioning of SDN/NFV-based security enablers for integrated protection of IoT systems. 2017 IEEE Conference on Standards for Communications and Networking (CSCN). :169–174.

Nowadays the adoption of IoT solutions is gaining high momentum in several fields, including energy, home and environment monitoring, transportation, and manufacturing. However, cybersecurity attacks to low-cost end-user devices can severely undermine the expected deployment of IoT solutions in a broad range of scenarios. To face these challenges, emerging software-based networking features can introduce new security enablers, providing further scalability and flexibility required to cope with massive IoT. In this paper, we present a novel framework aiming to exploit SDN/NFV-based security features and devise new efficient integration with existing IoT security approaches. The potential benefits of the proposed framework is validated in two case studies. Finally, a feasibility study is presented, accounting for potential interactions with open-source SDN/NFV projects and relevant standardization activities.