Visible to the public Biblio

Found 1049 results

Filters: Keyword is policy-based governance  [Clear All Filters]
2020-12-15
Prakash, A., Walambe, R..  2018.  Military Surveillance Robot Implementation Using Robot Operating System. 2018 IEEE Punecon. :1—5.

Robots are becoming more and more prevalent in many real world scenarios. Housekeeping, medical aid, human assistance are a few common implementations of robots. Military and Security are also major areas where robotics is being researched and implemented. Robots with the purpose of surveillance in war zones and terrorist scenarios need specific functionalities to perform their tasks with precision and efficiency. In this paper, we present a model of Military Surveillance Robot developed using Robot Operating System. The map generation based on Kinect sensor is presented and some test case scenarios are discussed with results.

2020-11-20
Benzekri, A., Laborde, R., Oglaza, A., Rammal, D., Barrere, F..  2019.  Dynamic security management driven by situations: An exploratory analysis of logs for the identification of security situations. 2019 3rd Cyber Security in Networking Conference (CSNet). :66—72.
Situation awareness consists of "the perception of the elements in the environment within a volume of time and space, the comprehension of their meaning, and the projection of their status in the near future". Being aware of the security situation is then mandatory to launch proper security reactions in response to cybersecurity attacks. Security Incident and Event Management solutions are deployed within Security Operation Centers. Some vendors propose machine learning based approaches to detect intrusions by analysing networks behaviours. But cyberattacks like Wannacry and NotPetya, which shut down hundreds of thousands of computers, demonstrated that networks monitoring and surveillance solutions remain insufficient. Detecting these complex attacks (a.k.a. Advanced Persistent Threats) requires security administrators to retain a large number of logs just in case problems are detected and involve the investigation of past security events. This approach generates massive data that have to be analysed at the right time in order to detect any accidental or caused incident. In the same time, security administrators are not yet seasoned to such a task and lack the desired skills in data science. As a consequence, a large amount of data is available and still remains unexplored which leaves number of indicators of compromise under the radar. Building on the concept of situation awareness, we developed a situation-driven framework, called dynSMAUG, for dynamic security management. This approach simplifies the security management of dynamic systems and allows the specification of security policies at a high-level of abstraction (close to security requirements). This invited paper aims at exposing real security situations elicitation, coming from networks security experts, and showing the results of exploratory analysis techniques using complex event processing techniques to identify and extract security situations from a large volume of logs. The results contributed to the extension of the dynSMAUG solution.
EVINA, P. A., AYACHI, F. LABBENE, JAIDI, F., Bouhoula, A..  2019.  Enforcing a Risk Assessment Approach in Access Control Policies Management: Analysis, Correlation Study and Model Enhancement. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1866—1871.
Nowadays, the domain of Information System (IS) security is closely related to that of Risk Management (RM). As an immediate consequence, talking about and tackling the security of IS imply the implementation of a set of mechanisms that aim to reduce or eliminate the risk of IS degradations. Also, the high cadence of IS evolution requires careful consideration of corresponding measures to prevent or mitigate security risks that may cause the degradation of these systems. From this perspective, an access control service is subjected to a number of rules established to ensure the integrity and confidentiality of the handled data. During their lifecycle, the use or manipulation of Access Control Policies (ACP) is accompanied with several defects that are made intentionally or not. For many years, these defects have been the subject of numerous studies either for their detection or for the analysis of the risks incurred by IS to their recurrence and complexity. In our research works, we focus on the analysis and risk assessment of noncompliance anomalies in concrete instances of access control policies. We complete our analysis by studying and assessing the risks associated with the correlation that may exist between different anomalies. Indeed, taking into account possible correlations can make a significant contribution to the reliability of IS. Identifying correlation links between anomalies in concrete instances of ACP contributes in discovering or detecting new scenarios of alterations and attacks. Therefore, once done, this study mainly contributes in the improvement of our risk assessment model.
Han, H., Wang, Q., Chen, C..  2019.  Policy Text Analysis Based on Text Mining and Fuzzy Cognitive Map. 2019 15th International Conference on Computational Intelligence and Security (CIS). :142—146.
With the introduction of computer methods, the amount of material and processing accuracy of policy text analysis have been greatly improved. In this paper, Text mining(TM) and latent semantic analysis(LSA) were used to collect policy documents and extract policy elements from them. Fuzzy association rule mining(FARM) technique and partial association test (PA) were used to discover the causal relationships and impact degrees between elements, and a fuzzy cognitive map (FCM) was developed to deduct the evolution of elements through a soft computing method. This non-interventionist approach avoids the validity defects caused by the subjective bias of researchers and provides policy makers with more objective policy suggestions from a neutral perspective. To illustrate the accuracy of this method, this study experimented by taking the state-owned capital layout adjustment related policies as an example, and proved that this method can effectively analyze policy text.
Demjaha, A., Caulfield, T., Sasse, M. Angela, Pym, D..  2019.  2 Fast 2 Secure: A Case Study of Post-Breach Security Changes. 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW). :192—201.
A security breach often makes companies react by changing their attitude and approach to security within the organization. This paper presents an in-depth case study of post-breach security changes made by a company and the consequences of those changes. We employ the principles of participatory action research and humble inquiry to conduct a long-term study with employee interviews while embedded in the organization's security division. Despite an extremely high level of financial investment in security, and consistent attention and involvement from the board, the interviews indicate a significant level of friction between employees and security. In the main themes that emerged from our data analysis, a number of factors shed light on the friction: fear of another breach leading to zero risk appetite, impossible security controls making non-compliance a norm, security theatre underminining the purpose of security policies, employees often trading-off security with productivity, and as such being treated as children in detention rather than employees trying to finish their paid jobs. This paper shows that post-breach security changes can be complex and sometimes risky due to emotions often being involved. Without an approach considerate of how humans and security interact, even with high financial investment, attempts to change an organization's security behaviour may be ineffective.
Mousavi, M. Z., Kumar, S..  2019.  Analysis of key Factors for Organization Information Security. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon). :514—518.
Protecting sensitive information from illegal access and misuse is crucial to all organizations. An inappropriate Information Security (IS) policy and procedures are not only a suitable environment for an outsider attack but also a good chance for the insiders' misuse. In this paper, we will discuss the roles of an organization in information security and how human behavior affects the Information Security System (ISS). How an organization can create and instill an effective information security culture in an organization to improve their information safeguards. The findings in this review can be used to further researches and will be useful for organizations to improve their information security structure (ISC).
Bhaharin, S. H., Mokhtar, U. A., Sulaiman, R., Yusof, M. M..  2019.  Issues and Trends in Information Security Policy Compliance. 2019 6th International Conference on Research and Innovation in Information Systems (ICRIIS). :1—6.
In the era of Industry 4.0 (IR 4.0), information leakage has become a critical issue for information security. The basic approach to addressing information leakage threats is to implement an information security policy (ISP) that defines the standards, boundaries, and responsibilities of users of information and technology of an organization. ISPs are one of the most commonly used methods for controlling internal user security behaviours, which include, but not limited to, computer usage ethics; organizational system usage policies; Internet and email usage policies; and the use of social media. Human error is the main security threat to information security, resulting from negligence, ignorance, and failure to adhere to organizational information security policies. Information security incidents are a problem related to human behaviour because technology is designed and operated by humans, presenting the opportunities and spaces for human error. In addition to the factor of human error as the main source of information leakage, this study aims to systematically analyse the fundamental issues of information security policy compliance. An analysis of these papers identifies and categories critical factor that effect an employee's attitude toward compliance with ISP. The human, process, technology element and information governance should be thought as a significant scope for more efficiency of information security policy compliance and in any further extensive studies to improve on information security policy compliance. Therefore, to ensure these are properly understood, further study is needed to identity the information governance that needs to be included in organizations and current best practices for developing an information security policy compliance within organizations.
Koo, J., Kim, Y., Lee, S..  2019.  Security Requirements for Cloud-based C4I Security Architecture. 2019 International Conference on Platform Technology and Service (PlatCon). :1—4.
With the development of cloud computing technology, developed countries including the U.S. are performing the efficiency of national defense and public sector, national innovation, and construction of the infrastructure for cloud computing environment through the policies that apply cloud computing. Korea Military is also considering that apply the cloud computing technology into its national defense command control system. However, only existing security requirements for national defense information system cannot solve the problem related security vulnerabilities of cloud computing. In order to solve this problem, it is necessary to design the secure security architecture of national defense command control system considering security requirements related to cloud computing. This study analyze the security requirements needed when the U.S. military apply the cloud computing system. It also analyze existing security requirements for Korea national defense information system and security requirements for cloud computing system and draw the security requirements needed to Korea national defense information system based on cloud computing.
Lavrenovs, A., Melón, F. J. R..  2018.  HTTP security headers analysis of top one million websites. 2018 10th International Conference on Cyber Conflict (CyCon). :345—370.
We present research on the security of the most popular websites, ranked according to Alexa's top one million list, based on an HTTP response headers analysis. For each of the domains included in the list, we made four different requests: an HTTP/1.1 request to the domain itself and to its "www" subdomain and two more equivalent HTTPS requests. Redirections were always followed. A detailed discussion of the request process and main outcomes is presented, including X.509 certificate issues and comparison of results with equivalent HTTP/2 requests. The body of the responses was discarded, and the HTTP response header fields were stored in a database. We analysed the prevalence of the most important response headers related to web security aspects. In particular, we took into account Strict- Transport-Security, Content-Security-Policy, X-XSS-Protection, X-Frame-Options, Set-Cookie (for session cookies) and X-Content-Type. We also reviewed the contents of response HTTP headers that potentially could reveal unwanted information, like Server (and related headers), Date and Referrer-Policy. This research offers an up-to-date survey of current prevalence of web security policies implemented through HTTP response headers and concludes that most popular sites tend to implement it noticeably more often than less popular ones. Equally, HTTPS sites seem to be far more eager to implement those policies than HTTP only websites. A comparison with previous works show that web security policies based on HTTP response headers are continuously growing, but still far from satisfactory widespread adoption.
Alzahrani, A., Johnson, C., Altamimi, S..  2018.  Information security policy compliance: Investigating the role of intrinsic motivation towards policy compliance in the organization. 2018 4th International Conference on Information Management (ICIM). :125—132.
Recent behavioral research in information security has focused on increasing employees' motivation to enhance the security performance in an organization. This empirical study investigated employees' information security policy (ISP) compliance intentions using self-determination theory (SDT). Relevant hypotheses were developed to test the proposed research model. Data obtained via a survey (N=3D407) from a Fortune 600 organization in Saudi Arabia provides empirical support for the model. The results confirmed that autonomy, competence and the concept of relatedness all positively affect employees' intentions to comply. The variable 'perceived value congruence' had a negative effect on ISP compliance intentions, and the perceived legitimacy construct did not affect employees' intentions. In general, the findings of this study suggest that SDT has value in research into employees' ISP compliance intentions.
Moghaddam, F. F., Wieder, P., Yahyapour, R., Khodadadi, T..  2018.  A Reliable Ring Analysis Engine for Establishment of Multi-Level Security Management in Clouds. 2018 41st International Conference on Telecommunications and Signal Processing (TSP). :1—5.
Security and Privacy challenges are the most obstacles for the advancement of cloud computing and the erosion of trust boundaries already happening in organizations is amplified and accelerated by this emerging technology. Policy Management Frameworks are the most proper solutions to create dedicated security levels based on the sensitivity of resources and according to the mapping process between requirements cloud customers and capabilities of service providers. The most concerning issue in these frameworks is the rate of perfect matches between capabilities and requirements. In this paper, a reliable ring analysis engine has been introduced to efficiently map the security requirements of cloud customers to the capabilities of service provider and to enhance the rate of perfect matches between them for establishment of different security levels in clouds. In the suggested model a structural index has been introduced to receive the requirement and efficiently map them to the most proper security mechanism of the service provider. Our results show that this index-based engine enhances the rate of perfect matches considerably and decreases the detected conflicts in syntactic and semantic analysis.
Wang, X., Herwono, I., Cerbo, F. D., Kearney, P., Shackleton, M..  2018.  Enabling Cyber Security Data Sharing for Large-scale Enterprises Using Managed Security Services. 2018 IEEE Conference on Communications and Network Security (CNS). :1—7.
Large enterprises and organizations from both private and public sectors typically outsource a platform solution, as part of the Managed Security Services (MSSs), from 3rd party providers (MSSPs) to monitor and analyze their data containing cyber security information. Sharing such data among these large entities is believed to improve their effectiveness and efficiency at tackling cybercrimes, via improved analytics and insights. However, MSS platform customers currently are not able or not willing to share data among themselves because of multiple reasons, including privacy and confidentiality concerns, even when they are using the same MSS platform. Therefore any proposed mechanism or technique to address such a challenge need to ensure that sharing is achieved in a secure and controlled way. In this paper, we propose a new architecture and use case driven designs to enable confidential, flexible and collaborative data sharing among such organizations using the same MSS platform. MSS platform is a complex environment where different stakeholders, including authorized MSSP personnel and customers' own users, have access to the same platform but with different types of rights and tasks. Hence we make every effort to improve the usability of the platform supporting sharing while keeping the existing rights and tasks intact. As an innovative and pioneering attempt to address the challenge of data sharing in the MSS platform, we hope to encourage further work to follow so that confidential and collaborative sharing eventually happens among MSS platform customers.
Paul, S., Padhy, N. P., Mishra, S. K., Srivastava, A. K..  2019.  UUCA: Utility-User Cooperative Algorithm for Flexible Load Scheduling in Distribution System. 2019 8th International Conference on Power Systems (ICPS). :1—6.
Demand response analysis in smart grid deployment substantiated itself as an important research area in recent few years. Two-way communication between utility and users makes peak load reduction feasible by delaying the operation of deferrable appliances. Flexible appliance rescheduling is preferred to the users compared to traditional load curtailment. Again, if users' preferences are accounted into appliance transferring process, then customers concede a little discomfort to help the utility in peak reduction. This paper presents a novel Utility-User Cooperative Algorithm (UUCA) to lower total electricity cost and gross peak demand while preserving users' privacy and preferences. Main driving force in UUCA to motivate the consumers is a new cost function for their flexible appliances. As a result, utility will experience low peak and due to electricity cost decrement, users will get reduced bill. However, to maintain privacy, the behaviors of one customer have not be revealed either to other customers or to the central utility. To justify the effectiveness, UUCA is executed separately on residential, commercial and industrial customers of a distribution grid. Harmony search optimization technique has proved itself superior compared to other heuristic search techniques to prove efficacy of UUCA.
Sarochar, J., Acharya, I., Riggs, H., Sundararajan, A., Wei, L., Olowu, T., Sarwat, A. I..  2019.  Synthesizing Energy Consumption Data Using a Mixture Density Network Integrated with Long Short Term Memory. 2019 IEEE Green Technologies Conference(GreenTech). :1—4.
Smart cities comprise multiple critical infrastructures, two of which are the power grid and communication networks, backed by centralized data analytics and storage. To effectively model the interdependencies between these infrastructures and enable a greater understanding of how communities respond to and impact them, large amounts of varied, real-world data on residential and commercial consumer energy consumption, load patterns, and associated human behavioral impacts are required. The dissemination of such data to the research communities is, however, largely restricted because of security and privacy concerns. This paper creates an opportunity for the development and dissemination of synthetic energy consumption data which is inherently anonymous but holds similarities to the properties of real data. This paper explores a framework using mixture density network (MDN) model integrated with a multi-layered Long Short-Term Memory (LSTM) network which shows promise in this area of research. The model is trained using an initial sample recorded from residential smart meters in the state of Florida, and is used to generate fully synthetic energy consumption data. The synthesized data will be made publicly available for interested users.
Semwal, S., Badoni, M., Saxena, N..  2019.  Smart Meters for Domestic Consumers: Innovative Methods for Identifying Appliances using NIALM. 2019 Women Institute of Technology Conference on Electrical and Computer Engineering (WITCON ECE). :81—90.
A country drives by their people and the electricity energy, the availability of the electricity power reflects the strength of that country. All most everything depends on the electricity energy, So it is become very important that we use the available energy very efficiently, and here the energy management come in the picture and Non Intrusive appliance Load monitoring (NIALM) is the part of energy management, in which the energy consumption by the particular load is monitored without any intrusion of wire/circuit. In literature, NIALM has been discussed as a monitoring process for conservation of energy using single point sensing (SPS) for extraction of aggregate signal of the appliances' features, ignoring the second function of demand response (DR) assuming that it would be manual or sensor-based. This assumption is not implementable in developing countries like India, because of requirement of extra cost of sensors, and privacy concerns. Surprisingly, despite decades of research on NIALM, none of the suggested procedures has resulted in commercial application. This paper highlights the causes behind non- commercialization, and proposes a viable and easy solution worthy of commercial exploitation both for monitoring and DR management for outage reduction in respect of Indian domestic consumers. Using a approach of multi point sensing (MPS), combined with Independent Component Analysis (ICA), experiments has been done in laboratory environment and CPWD specification has been followed.
Efstathopoulos, G., Grammatikis, P. R., Sarigiannidis, P., Argyriou, V., Sarigiannidis, A., Stamatakis, K., Angelopoulos, M. K., Athanasopoulos, S. K..  2019.  Operational Data Based Intrusion Detection System for Smart Grid. 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :1—6.

With the rapid progression of Information and Communication Technology (ICT) and especially of Internet of Things (IoT), the conventional electrical grid is transformed into a new intelligent paradigm, known as Smart Grid (SG). SG provides significant benefits both for utility companies and energy consumers such as the two-way communication (both electricity and information), distributed generation, remote monitoring, self-healing and pervasive control. However, at the same time, this dependence introduces new security challenges, since SG inherits the vulnerabilities of multiple heterogeneous, co-existing legacy and smart technologies, such as IoT and Industrial Control Systems (ICS). An effective countermeasure against the various cyberthreats in SG is the Intrusion Detection System (IDS), informing the operator timely about the possible cyberattacks and anomalies. In this paper, we provide an anomaly-based IDS especially designed for SG utilising operational data from a real power plant. In particular, many machine learning and deep learning models were deployed, introducing novel parameters and feature representations in a comparative study. The evaluation analysis demonstrated the efficacy of the proposed IDS and the improvement due to the suggested complex data representation.

Prasad, G., Huo, Y., Lampe, L., Leung, V. C. M..  2019.  Machine Learning Based Physical-Layer Intrusion Detection and Location for the Smart Grid. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—6.
Security and privacy of smart grid communication data is crucial given the nature of the continuous bidirectional information exchange between the consumer and the utilities. Data security has conventionally been ensured using cryptographic techniques implemented at the upper layers of the network stack. However, it has been shown that security can be further enhanced using physical layer (PHY) methods. To aid and/or complement such PHY and upper layer techniques, in this paper, we propose a PHY design that can detect and locate not only an active intruder but also a passive eavesdropper in the network. Our method can either be used as a stand-alone solution or together with existing techniques to achieve improved smart grid data security. Our machine learning based solution intelligently and automatically detects and locates a possible intruder in the network by reusing power line transmission modems installed in the grid for communication purposes. Simulation results show that our cost-efficient design provides near ideal intruder detection rates and also estimates its location with a high degree of accuracy.
Roy, D. D., Shin, D..  2019.  Network Intrusion Detection in Smart Grids for Imbalanced Attack Types Using Machine Learning Models. 2019 International Conference on Information and Communication Technology Convergence (ICTC). :576—581.
Smart grid has evolved as the next generation power grid paradigm which enables the transfer of real time information between the utility company and the consumer via smart meter and advanced metering infrastructure (AMI). These information facilitate many services for both, such as automatic meter reading, demand side management, and time-of-use (TOU) pricing. However, there have been growing security and privacy concerns over smart grid systems, which are built with both smart and legacy information and operational technologies. Intrusion detection is a critical security service for smart grid systems, alerting the system operator for the presence of ongoing attacks. Hence, there has been lots of research conducted on intrusion detection in the past, especially anomaly-based intrusion detection. Problems emerge when common approaches of pattern recognition are used for imbalanced data which represent much more data instances belonging to normal behaviors than to attack ones, and these approaches cause low detection rates for minority classes. In this paper, we study various machine learning models to overcome this drawback by using CIC-IDS2018 dataset [1].
Lu, X., Guan, Z., Zhou, X., Du, X., Wu, L., Guizani, M..  2019.  A Secure and Efficient Renewable Energy Trading Scheme Based on Blockchain in Smart Grid. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :1839—1844.
Nowadays, with the diversification and decentralization of energy systems, the energy Internet makes it possible to interconnect distributed energy sources and consumers. In the energy trading market, the traditional centralized model relies entirely on trusted third parties. However, as the number of entities involved in the transactions grows and the forms of transactions diversify, the centralized model gradually exposes problems such as insufficient scalability, High energy consumption, and low processing efficiency. To address these challenges, we propose a secure and efficient energy renewable trading scheme based on blockchain. In our scheme, the electricity market trading model is divided into two levels, which can not only protect the privacy, but also achieve a green computing. In addition, in order to adapt to the relatively weak computing power of the underlying equipment in smart grid, we design a credibility-based equity proof mechanism to greatly improve the system availability. Compared with other similar distributed energy trading schemes, we prove the advantages of our scheme in terms of high operational efficiency and low computational overhead through experimental evaluations. Additionally, we conduct a detailed security analysis to demonstrate that our solution meets the security requirements.
Lardier, W., Varo, Q., Yan, J..  2019.  Quantum-Sim: An Open-Source Co-Simulation Platform for Quantum Key Distribution-Based Smart Grid Communications. 2019 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :1—6.
Grid modernization efforts with the latest information and communication technologies will significantly benefit smart grids in the coming years. More optical fibre communications between consumers and the control center will promise better demand response and customer engagement, yet the increasing attack surface and man-in-the-middle (MITM) threats can result in security and privacy challenges. Among the studies for more secure smart grid communications, quantum key distribution protocols (QKD) have emerged as a promising option. To bridge the theoretical advantages of quantum communication to its practical utilization, however, comprehensive investigations have to be conducted with realistic cyber-physical smart grid structures and scenarios. To facilitate research in this direction, this paper proposes an open-source, research-oriented co-simulation platform that orchestrates cyber and power simulators under the MOSAIK framework. The proposed platform allows flexible and realistic power flow-based co-simulation of quantum communications and electrical grids, where different cyber and power topologies, QKD protocols, and attack threats can be investigated. Using quantum-based communication under MITM attacks, the paper presented detailed case studies to demonstrate how the platform enables quick setup of a lowvoltage distribution grid, implementation of different protocols and cryptosystems, as well as evaluations of both communication efficiency and security against MITM attacks. The platform has been made available online to empower researchers in the modelling of quantum-based cyber-physical systems, pilot studies on quantum communications in smart grid, as well as improved attack resilience against malicious intruders.
Romdhane, R. B., Hammami, H., Hamdi, M., Kim, T..  2019.  At the cross roads of lattice-based and homomorphic encryption to secure data aggregation in smart grid. 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC). :1067—1072.

Various research efforts have focused on the problem of customer privacy protection in the smart grid arising from the large deployment of smart energy meters. In fact, the deployed smart meters distribute accurate profiles of home energy use, which can reflect the consumers' behaviour. This paper proposes a privacy-preserving lattice-based homomorphic aggregation scheme. In this approach, the smart household appliances perform the data aggregation while the smart meter works as relay node. Its role is to authenticate the exchanged messages between the home area network appliances and the related gateway. Security analysis show that our scheme guarantees consumer privacy and messages confidentiality and integrity in addition to its robustness against several attacks. Experimental results demonstrate the efficiency of our proposed approach in terms of communication complexity.

Antoniadis, I. I., Chatzidimitriou, K. C., Symeonidis, A. L..  2019.  Security and Privacy for Smart Meters: A Data-Driven Mapping Study. 2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). :1—5.
Smart metering systems have been gaining popularity as a vital part of the general smart grid paradigm. Naturally, as new technologies arise to cover this emerging field, so do security and privacy related issues regarding the energy consumer's personal data. These challenges impose the need for the development of new methods through a better understanding of the state-of-the-art. This paper aims at identifying the main categories of security and privacy techniques utilized in smart metering systems from a three-point perspective: i) a field research survey, ii) EU initiatives and findings towards the same direction and iii) a data-driven analysis of the state-of-the-art and the identification of its main topics (or themes) using topic modeling techniques. Detailed quantitative results of this analysis, such as semantic interpretation of the identified topics and a graph representation of the topic trends over time, are presented.
Chin, J., Zufferey, T., Shyti, E., Hug, G..  2019.  Load Forecasting of Privacy-Aware Consumers. 2019 IEEE Milan PowerTech. :1—6.

The roll-out of smart meters (SMs) in the electric grid has enabled data-driven grid management and planning techniques. SM data can be used together with short-term load forecasts (STLFs) to overcome polling frequency constraints for better grid management. However, the use of SMs that report consumption data at high spatial and temporal resolutions entails consumer privacy risks, motivating work in protecting consumer privacy. The impact of privacy protection schemes on STLF accuracy is not well studied, especially for smaller aggregations of consumers, whose load profiles are subject to more volatility and are, thus, harder to predict. In this paper, we analyse the impact of two user demand shaping privacy protection schemes, model-distribution predictive control (MDPC) and load-levelling, on STLF accuracy. Support vector regression is used to predict the load profiles at different consumer aggregation levels. Results indicate that, while the MDPC algorithm marginally affects forecast accuracy for smaller consumer aggregations, this diminishes at higher aggregation levels. More importantly, the load-levelling scheme significantly improves STLF accuracy as it smoothens out the grid visible consumer load profile.

2020-11-09
Li, H., Patnaik, S., Sengupta, A., Yang, H., Knechtel, J., Yu, B., Young, E. F. Y., Sinanoglu, O..  2019.  Attacking Split Manufacturing from a Deep Learning Perspective. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1–6.
The notion of integrated circuit split manufacturing which delegates the front-end-of-line (FEOL) and back-end-of-line (BEOL) parts to different foundries, is to prevent overproduction, piracy of the intellectual property (IP), or targeted insertion of hardware Trojans by adversaries in the FEOL facility. In this work, we challenge the security promise of split manufacturing by formulating various layout-level placement and routing hints as vector- and image-based features. We construct a sophisticated deep neural network which can infer the missing BEOL connections with high accuracy. Compared with the publicly available network-flow attack [1], for the same set of ISCAS-85benchmarks, we achieve 1.21× accuracy when splitting on M1 and 1.12× accuracy when splitting on M3 with less than 1% running time.
Karmakar, R., Jana, S. S., Chattopadhyay, S..  2019.  A Cellular Automata Guided Obfuscation Strategy For Finite-State-Machine Synthesis. 2019 56th ACM/IEEE Design Automation Conference (DAC). :1–6.
A popular countermeasure against IP piracy relies on obfuscating the Finite State Machine (FSM), which is assumed to be the heart of a digital system. In this paper, we propose to use a special class of non-group additive cellular automata (CA) called D1 * CA, and it's counterpart D1 * CAdual to obfuscate each state-transition of an FSM. The synthesized FSM exhibits correct state-transitions only for a correct key, which is a designer's secret. The proposed easily testable key-controlled FSM synthesis scheme can thwart reverse engineering attacks, thus offers IP protection.