Visible to the public Biblio

Found 1049 results

Filters: Keyword is policy-based governance  [Clear All Filters]
2020-11-09
Sengupta, A., Roy, D., Mohanty, S. P..  2019.  Low-Overhead Robust RTL Signature for DSP Core Protection: New Paradigm for Smart CE Design. 2019 IEEE International Conference on Consumer Electronics (ICCE). :1–6.
The design process of smart Consumer Electronics (CE) devices heavily relies on reusable Intellectual Property (IP) cores of Digital Signal Processor (DSP) and Multimedia Processor (MP). On the other hand, due to strict competition and rivalry between IP vendors, the problem of ownership conflict and IP piracy is surging. Therefore, to design a secured smart CE device, protection of DSP/MP IP core is essential. Embedding a robust IP owner's signature can protect an IP core from ownership abuse and forgery. This paper presents a covert signature embedding process for DSP/MP IP core at Register-transfer level (RTL). The secret marks of the signature are distributed over the entire design such that it provides higher robustness. For example for 8th order FIR filter, it incurs only between 6% and 3% area overhead for maximum and minimum size signature respectively compared to the non-signature FIR RTL design but with significantly enhanced security.
Rao, V. V., Savidis, I..  2019.  Mesh Based Obfuscation of Analog Circuit Properties. 2019 IEEE International Symposium on Circuits and Systems (ISCAS). :1–5.
In this paper, a technique to design analog circuits with enhanced security is described. The proposed key based obfuscation technique uses a mesh topology to obfuscate the physical dimensions and the threshold voltage of the transistor. To mitigate the additional overhead of implementing the obfuscated circuitry, a satisfiability modulo theory (SMT) based algorithm is proposed to auto-determine the sizes of the transistors selected for obfuscation such that only a limited set of key values produce the correct circuit functionality. The proposed algorithm and the obfuscation methodology is implemented on an LC tank voltage-controlled oscillator (VCO). The operating frequency of the VCO is masked with a 24-bit encryption key applied to a 2×6 mesh structure that obfuscates the dimensions of each varactor transistor. The probability of determining the correct key is 5.96×10-8 through brute force attack. The dimensions of the obfuscated transistors determined by the analog satisfiability (aSAT) algorithm result in at least a 15%, 3%, and 13% deviation in, respectively, the effective transistor dimensions, target frequency, and voltage amplitude when an incorrect key is applied to the VCO. In addition, only one key produces the desired frequency and properly sets the overall performance specifications of the VCO. The simulated results indicate that the proposed design methodology, which quickly and accurately determines the transistor sizes for obfuscation, produces the target specifications and provides protection for analog circuits against IP piracy and reverse engineering.
Rathor, M., Sengupta, A..  2019.  Enhanced Functional Obfuscation of DSP core using Flip-Flops and Combinational logic. 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin). :1–5.
Due to globalization of Integrated Circuit (IC) design flow, Intellectual Property (IP) cores have increasingly become susceptible to various hardware threats such as Trojan insertion, piracy, overbuilding etc. An IP core can be secured against these threats using functional obfuscation based security mechanism. This paper presents a functional obfuscation of digital signal processing (DSP) core for consumer electronics systems using a novel IP core locking block (ILB) logic that leverages the structure of flip-flops and combinational circuits. These ILBs perform the locking of the functionality of a DSP design and actuate the correct functionality only on application of a valid key sequence. In existing approaches so far, executing exhaustive trials are sufficient to extract the valid keys from an obfuscated design. However, proposed work is capable of hindering the extraction of valid keys even on exhaustive trials, unless successfully applied in the first attempt only. In other words, the proposed work drastically reduces the probability of obtaining valid key of a functionally obfuscated design in exhaustive trials. Experimental results indicate that the proposed approach achieves higher security and lower design overhead than previous works.
Islam, S. A., Sah, L. K., Katkoori, S..  2019.  DLockout: A Design Lockout Technique for Key Obfuscated RTL IP Designs. 2019 IEEE International Symposium on Smart Electronic Systems (iSES) (Formerly iNiS). :17–20.
Intellectual Property (IP) infringement including piracy and overproduction have emerged as significant threats in the semiconductor supply chain. Key-based obfuscation techniques (i.e., logic locking) are widely applied to secure legacy IP from such attacks. However, the fundamental question remains open whether an attacker is allowed an exponential amount of time to seek correct key or could it be useful to lock out the design in a non-destructive manner after several incorrect attempts. In this paper, we address this question with a robust design lockout technique. Specifically, we perform comparisons on obfuscation logic output that reflects the condition (correct or incorrect) of the applied key without changing the system behavior. The proposed approach, when combined with key obfuscation (logic locking) technique, increases the difficulty of reverse engineering key obfuscated RTL module. We provide security evaluation of DLockout against three common side-channel attacks followed by a quantitative assessment of the resilience. We conducted a set of experiments on four datapath intensive IPs and one crypto core for three different key lengths (32-, 64-, and 128-bit) under the typical design corner. On average, DLockout incurs negligible area, power, and delay overheads.
Sengupta, A., Gupta, G., Jalan, H..  2019.  Hardware Steganography for IP Core Protection of Fault Secured DSP Cores. 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin). :1–6.
Security of transient fault secured IP cores against piracy, false claim of ownership can be achieved during high level synthesis, especially when handling DSP or multimedia cores. Though watermarking that involves implanting a vendor defined signature onto the design can be useful, however research has shown its limitations such as less designer control, high overhead due to extreme dependency on signature size, combination and encoding rule. This paper proposes an alternative paradigm called `hardware steganography' where hidden additional designer's constraints are implanted in a fault secured IP core using entropy thresholding. In proposed hardware steganography, concealed information in the form of additional edges having a specific entropy value is embedded in the colored interval graph (CIG). This is a signature free approach and ensures high designer control (more robustness and stronger proof of authorship) as well as lower overhead than watermarking schemes used for DSP based IP cores.
Bose, S., Raikwar, M., Mukhopadhyay, D., Chattopadhyay, A., Lam, K..  2018.  BLIC: A Blockchain Protocol for Manufacturing and Supply Chain Management of ICS. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1326–1335.
Blockchain technology has brought a huge paradigm shift in multiple industries, by integrating distributed ledger, smart contracts and consensus protocol under the same roof. Notable applications of blockchain include cryptocurrencies and large-scale multi-party transaction management systems. The latter fits very well into the domain of manufacturing and supply chain management for Integrated Circuits (IC), which, despite several advanced technologies, is vulnerable to malicious practices, such as overproduction, IP piracy and deleterious design modification to gain unfair advantages. To combat these threats, researchers have proposed several ideas like hardware metering, design obfuscation, split manufacturing and watermarking. In this paper, we show, how these issues can be complementarily dealt with using blockchain technology coupled with identity-based encryption and physical unclonable functions, for improved resilience against certain adversarial motives. As part of our proposed blockchain protocol, titled `BLIC', we propose an authentication mechanism to secure both active and passive IC transactions, and a composite consensus protocol designed for IC supply chains. We also present studies on the security, scalability, privacy and anonymity of the BLIC protocol.
Mobaraki, S., Amirkhani, A., Atani, R. E..  2018.  A Novel PUF based Logic Encryption Technique to Prevent SAT Attacks and Trojan Insertion. 2018 9th International Symposium on Telecommunications (IST). :507–513.
The manufacturing of integrated circuits (IC) outside of the design houses makes it possible for the adversary to easily perform a reverse engineering attack against intellectual property (IP)/IC. The aim of this attack can be the IP piracy, overproduction, counterfeiting or inserting hardware Trojan (HT) throughout the supply chain of the IC. Preventing hardware Trojan insertion is a significant issue in the context of hardware security (HS) and has not been considered in most of the previous logic encryption methods. To eliminate this problem, in this paper an Anti-Trojan insertion algorithm is presented. The idea is based on the fact that reducing the signals with low-observability (LO) and low-controllability (LC) can prevent HT insertion significantly. The security of logic encryption methods depends on the algorithm and the encryption key. However, the security of these methods has been compromised by SAT attacks over recent years. SAT attacks, can decode the correct key from most logic encryption techniques. In this article, by using the PUF-based encryption, the applied key in the encryption is randomized and SAT attack cannot be performed. Based on the output of PUF, a unique encryption has been made for each chip that preventing from counterfeiting and IP piracy.
Zaman, M., Sengupta, A., Liu, D., Sinanoglu, O., Makris, Y., Rajendran, J. J. V..  2018.  Towards provably-secure performance locking. 2018 Design, Automation Test in Europe Conference Exhibition (DATE). :1592–1597.
Locking the functionality of an integrated circuit (IC) thwarts attacks such as intellectual property (IP) piracy, hardware Trojans, overbuilding, and counterfeiting. Although functional locking has been extensively investigated, locking the performance of an IC has been little explored. In this paper, we develop provably-secure performance locking, where only on applying the correct key the IC shows superior performance; for an incorrect key, the performance of the IC degrades significantly. This leads to a new business model, where the companies can design a single IC capable of different performances for different users. We develop mathematical definitions of security and theoretically, and experimentally prove the security against the state-of-the-art-attacks. We implemented performance locking on a FabScalar microprocessor, achieving a degradation in instructions per clock cycle (IPC) of up to 77% on applying an incorrect key, with an overhead of 0.6%, 0.2%, and 0% for area, power, and delay, respectively.
Patooghy, A., Aerabi, E., Rezaei, H., Mark, M., Fazeli, M., Kinsy, M. A..  2018.  Mystic: Mystifying IP Cores Using an Always-ON FSM Obfuscation Method. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :626–631.
The separation of manufacturing and design processes in the integrated circuit industry to tackle the ever increasing circuit complexity and time to market issues has brought with it some major security challenges. Chief among them is IP piracy by untrusted parties. Hardware obfuscation which locks the functionality and modifies the structure of an IP core to protect it from malicious modifications or piracy has been proposed as a solution. In this paper, we develop an efficient hardware obfuscation method, called Mystic (Mystifying IP Cores), to protect IP cores from reverse engineering, IP overproduction, and IP piracy. The key idea behind Mystic is to add additional state transitions to the original/functional FSM (Finite State Machine) that are taken only when incorrect keys are applied to the circuit. Using the proposed Mystic obfuscation approach, the underlying functionality of the IP core is locked and normal FSM transitions are only available to authorized chip users. The synthesis results of ITC99 circuit benchmarks for ASIC 45nm technology reveal that the Mystic protection method imposes on average 5.14% area overhead, 5.21% delay overhead, and 8.06% power consumption overheads while it exponentially lowers the probability that an unauthorized user will gain access to or derive the chip functionality.
Sengupta, A., Ashraf, M., Nabeel, M., Sinanoglu, O..  2018.  Customized Locking of IP Blocks on a Multi-Million-Gate SoC. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–7.
Reliance on off-site untrusted fabrication facilities has given rise to several threats such as intellectual property (IP) piracy, overbuilding and hardware Trojans. Logic locking is a promising defense technique against such malicious activities that is effected at the silicon layer. Over the past decade, several logic locking defenses and attacks have been presented, thereby, enhancing the state-of-the-art. Nevertheless, there has been little research aiming to demonstrate the applicability of logic locking with large-scale multi-million-gate industrial designs consisting of multiple IP blocks with different security requirements. In this work, we take on this challenge to successfully lock a multi-million-gate system-on-chip (SoC) provided by DARPA by taking it all the way to GDSII layout. We analyze how specific features, constraints, and security requirements of an IP block can be leveraged to lock its functionality in the most appropriate way. We show that the blocks of an SoC can be locked in a customized manner at 0.5%, 15.3%, and 1.5% chip-level overhead in power, performance, and area, respectively.
Hazari, N. A., Alsulami, F., Niamat, M..  2018.  FPGA IP Obfuscation Using Ring Oscillator Physical Unclonable Function. NAECON 2018 - IEEE National Aerospace and Electronics Conference. :105–108.
IP piracy, reverse engineering, and tampering with FPGA based IP is increasing over time. ROPUF based IP obfuscation can provide a feasible solution. In this paper, a novel approach of FPGA IP obfuscation is implemented using Ring Oscillator based Physical Unclonable Function (ROPUF) and random logic gates. This approach provides a lock and key mechanism as well as authentication of FPGA based designs to protect from security threats. Using the Xilinx ISE design tools and ISCAS 89 benchmarks we have designed a secure FPGA based IP protection scheme with an average of 15% area and 10% of power overhead.
Saeed, S. M., Cui, X., Zulehner, A., Wille, R., Drechsler, R., Wu, K., Karri, R..  2018.  IC/IP Piracy Assessment of Reversible Logic. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–8.
Reversible logic is a building block for adiabatic and quantum computing in addition to other applications. Since common functions are non-reversible, one needs to embed them into proper-size reversible functions by adding ancillary inputs and garbage outputs. We explore the Intellectual Property (IP) piracy of reversible circuits. The number of embeddings of regular functions in a reversible function and the percent of leaked ancillary inputs measure the difficulty of recovering the embedded function. To illustrate the key concepts, we study reversible logic circuits designed using reversible logic synthesis tools based on Binary Decision Diagrams and Quantum Multi-valued Decision Diagrams.
2020-11-02
Lin, Chun-Yu, Huang, Juinn-Dar, Yao, Hailong, Ho, Tsung-Yi.  2018.  A Comprehensive Security System for Digital Microfluidic Biochips. 2018 IEEE International Test Conference in Asia (ITC-Asia). :151—156.

Digital microfluidic biochips (DMFBs) have become popular in the healthcare industry recently because of its lowcost, high-throughput, and portability. Users can execute the experiments on biochips with high resolution, and the biochips market therefore grows significantly. However, malicious attackers exploit Intellectual Property (IP) piracy and Trojan attacks to gain illegal profits. The conventional approaches present defense mechanisms that target either IP piracy or Trojan attacks. In practical, DMFBs may suffer from the threat of being attacked by these two attacks at the same time. This paper presents a comprehensive security system to protect DMFBs from IP piracy and Trojan attacks. We propose an authentication mechanism to protect IP and detect errors caused by Trojans with CCD cameras. By our security system, we could generate secret keys for authentication and determine whether the bioassay is under the IP piracy and Trojan attacks. Experimental results demonstrate the efficacy of our security system without overhead of the bioassay completion time.

Wang, Nan, Yao, Manting, Jiang, Dongxu, Chen, Song, Zhu, Yu.  2018.  Security-Driven Task Scheduling for Multiprocessor System-on-Chips with Performance Constraints. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :545—550.

The high penetration of third-party intellectual property (3PIP) brings a high risk of malicious inclusions and data leakage in products due to the planted hardware Trojans, and system level security constraints have recently been proposed for MPSoCs protection against hardware Trojans. However, secret communication still can be established in the context of the proposed security constraints, and thus, another type of security constraints is also introduced to fully prevent such malicious inclusions. In addition, fulfilling the security constraints incurs serious overhead of schedule length, and a two-stage performance-constrained task scheduling algorithm is then proposed to maintain most of the security constraints. In the first stage, the schedule length is iteratively reduced by assigning sets of adjacent tasks into the same core after calculating the maximum weight independent set of a graph consisting of all timing critical paths. In the second stage, tasks are assigned to proper IP vendors and scheduled to time periods with a minimization of cores required. The experimental results show that our work reduces the schedule length of a task graph, while only a small number of security constraints are violated.

Qin, Maoyuan, Hu, Wei, Mu, Dejun, Tai, Yu.  2018.  Property Based Formal Security Verification for Hardware Trojan Detection. 2018 IEEE 3rd International Verification and Security Workshop (IVSW). :62—67.

The design of modern computer hardware heavily relies on third-party intellectual property (IP) cores, which may contain malicious hardware Trojans that could be exploited by an adversary to leak secret information or take control of the system. Existing hardware Trojan detection methods either require a golden reference design for comparison or extensive functional testing to identify suspicious signals. In this paper, we propose a new formal verification method to verify the security of hardware designs. The proposed solution formalizes fine grained gate level information flow model for proving security properties of hardware designs in the Coq theorem prover environment. Compare with existing register transfer level (RTL) information flow security models, our model only needs to translate a small number of logic primitives to their formal representations without the need of supporting the rich RTL HDL semantics or dealing with complex conditional branch or loop structures. As a result, a gate level information flow model can be created at much lower complexity while achieving significantly higher precision in modeling the security behavior of hardware designs. We use the AES-T1700 benchmark from Trust-HUB to demonstrate the effectiveness of our solution. Experimental results show that our method can detect and pinpoint the Trojan.

Fedosova, Tatyana V., Masych, Marina A., Afanasyev, Anton A., Borovskaya, Marina A., Liabakh, Nikolay N..  2018.  Development of Quantitative Methods for Evaluating Intellectual Resources in the Digital Economy. 2018 IEEE International Conference "Quality Management, Transport and Information Security, Information Technologies" (IT QM IS). :629—634.

The paper outlines the concept of the Digital economy, defines the role and types of intellectual resources in the context of digitalization of the economy, reviews existing approaches and methods to intellectual property valuation and analyzes drawbacks of quantitative evaluation of intellectual resources (based intellectual property valuation) related to: uncertainty, noisy data, heterogeneity of resources, nonformalizability, lack of reliable tools for measuring the parameters of intellectual resources and non-stationary development of intellectual resources. The results of the study offer the ways of further development of methods for quantitative evaluation of intellectual resources (inter alia aimed at their capitalization).

Ajay, K, Bharath, B, Akhil, M V, Akanksh, R, Hemavathi, P.  2018.  Intellectual Property Management Using Blockchain. 2018 3rd International Conference on Inventive Computation Technologies (ICICT). :428—430.

With the advent of blockchain technology, multiple avenues of use are being explored. The immutability and security afforded by blockchain are the key aspects of exploitation. Extending this to legal contracts involving digital intellectual properties provides a way to overcome the use of antiquated paperwork to handle digital assets.

Sengupta, Anirban, Chandra, N. Prajwal, Kumar, E. Ranjith.  2019.  Robust Digital Signature to Protect IP Core against Fraudulent Ownership and Cloning. 2019 IEEE 9th International Conference on Consumer Electronics (ICCE-Berlin). :1—3.

Digital signal processing (DSP) and multimedia based reusable Intellectual property (IP) cores form key components of system-on-chips used in consumer electronic devices. They represent years of valuable investment and hence need protection against prevalent threats such as IP cloning and fraudulent claim of ownership. This paper presents a novel crypto digital signature approach which incorporates multiple security modules such as encryption, hashing and encoding for protection of digital signature processing cores. The proposed approach achieves higher robustness (and reliability), in terms of lower probability of coincidence, at lower design cost than existing watermarking approaches for IP cores. The proposed approach achieves stronger proof of authorship (on average by 39.7%) as well as requires lesser storage hardware compared to a recent similar work.

Zhang, Yuan, Xu, Chunxiang, Li, Hongwei, Yang, Haomiao, Shen, Xuemin.  2019.  Chronos: Secure and Accurate Time-Stamping Scheme for Digital Files via Blockchain. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1—6.

It is common to certify when a file was created in digital investigations, e.g., determining first inventors for patentable ideas in intellectual property systems to resolve disputes. Secure time-stamping schemes can be derived from blockchain-based storage to protect files from backdating/forward-dating, where a file is integrated into a transaction on a blockchain and the timestamp of the corresponding block reflects the latest time the file was created. Nevertheless, blocks' timestamps in blockchains suffer from time errors, which causes the inaccuracy of files' timestamps. In this paper, we propose an accurate blockchain-based time-stamping scheme called Chronos. In Chronos, when a file is created, the file and a sufficient number of successive blocks that are latest confirmed on blockchain are integrated into a transaction. Due to chain quality, it is computationally infeasible to pre-compute these blocks. The time when the last block was chained to the blockchain serves as the earliest creation time of the file. The time when the block including the transaction was chained indicates the latest creation time of the file. Therefore, Chronos makes the file's creation time corresponding to this time interval. Based on chain growth, Chronos derives the time when these two blocks were chained from their heights on the blockchain, which ensures the accuracy of the file's timestamp. The security and performance of Chronos are demonstrated by a comprehensive evaluation.

Shayan, Mohammed, Bhattacharjee, Sukanta, Song, Yong-Ak, Chakrabarty, Krishnendu, Karri, Ramesh.  2019.  Deceive the Attacker: Thwarting IP Theft in Sieve-Valve-based Biochips. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :210—215.

Researchers develop bioassays following rigorous experimentation in the lab that involves considerable fiscal and highly-skilled-person-hour investment. Previous work shows that a bioassay implementation can be reverse engineered by using images or video and control signals of the biochip. Hence, techniques must be devised to protect the intellectual property (IP) rights of the bioassay developer. This study is the first step in this direction and it makes the following contributions: (1) it introduces use of a sieve-valve as a security primitive to obfuscate bioassay implementations; (2) it shows how sieve-valves can be used to obscure biochip building blocks such as multiplexers and mixers; (3) it presents design rules and security metrics to design and measure obfuscated biochips. We assess the cost-security trade-offs associated with this solution and demonstrate practical sieve-valve based obfuscation on real-life biochips.

Sayed-Ahmed, Amr, Haj-Yahya, Jawad, Chattopadhyay, Anupam.  2019.  SoCINT: Resilient System-on-Chip via Dynamic Intrusion Detection. 2019 32nd International Conference on VLSI Design and 2019 18th International Conference on Embedded Systems (VLSID). :359—364.

Modern multicore System-on-Chips (SoCs) are regularly designed with third-party Intellectual Properties (IPs) and software tools to manage the complexity and development cost. This approach naturally introduces major security concerns, especially for those SoCs used in critical applications and cyberinfrastructure. Despite approaches like split manufacturing, security testing and hardware metering, this remains an open and challenging problem. In this work, we propose a dynamic intrusion detection approach to address the security challenge. The proposed runtime system (SoCINT) systematically gathers information about untrusted IPs and strictly enforces the access policies. SoCINT surpasses the-state-of-the-art monitoring systems by supporting hardware tracing, for more robust analysis, together with providing smart counterintelligence strategies. SoCINT is implemented in an open source processor running on a commercial FPGA platform. The evaluation results validate our claims by demonstrating resilience against attacks exploiting erroneous or malicious IPs.

Duncan, Adam, Rahman, Fahim, Lukefahr, Andrew, Farahmandi, Farimah, Tehranipoor, Mark.  2019.  FPGA Bitstream Security: A Day in the Life. 2019 IEEE International Test Conference (ITC). :1—10.

Security concerns for field-programmable gate array (FPGA) applications and hardware are evolving as FPGA designs grow in complexity, involve sophisticated intellectual properties (IPs), and pass through more entities in the design and implementation flow. FPGAs are now routinely found integrated into system-on-chip (SoC) platforms, cloud-based shared computing resources, and in commercial and government systems. The IPs included in FPGAs are sourced from multiple origins and passed through numerous entities (such as design house, system integrator, and users) through the lifecycle. This paper thoroughly examines the interaction of these entities from the perspective of the bitstream file responsible for the actual hardware configuration of the FPGA. Five stages of the bitstream lifecycle are introduced to analyze this interaction: 1) bitstream-generation, 2) bitstream-at-rest, 3) bitstream-loading, 4) bitstream-running, and 5) bitstream-end-of-life. Potential threats and vulnerabilities are discussed at each stage, and both vendor-offered and academic countermeasures are highlighted for a robust and comprehensive security assurance.

Wang, Jiawei, Zhang, Yuejun, Wang, Pengjun, Luan, Zhicun, Xue, Xiaoyong, Zeng, Xiaoyang, Yu, Qiaoyan.  2019.  An Orthogonal Algorithm for Key Management in Hardware Obfuscation. 2019 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1—4.

The globalization of supply chain makes semiconductor chips susceptible to various security threats. Design obfuscation techniques have been widely investigated to thwart intellectual property (IP) piracy attacks. Key distribution among IP providers, system integration team, and end users remains as a challenging problem. This work proposes an orthogonal obfuscation method, which utilizes an orthogonal matrix to authenticate obfuscation keys, rather than directly examining each activation key. The proposed method hides the keys by using an orthogonal obfuscation algorithm to increasing the key retrieval time, such that the primary keys for IP cores will not be leaked. The simulation results show that the proposed method reduces the key retrieval time by 36.3% over the baseline. The proposed obfuscation methods have been successfully applied to ISCAS'89 benchmark circuits. Experimental results indicate that the orthogonal obfuscation only increases the area by 3.4% and consumes 4.7% more power than the baseline1.

Das, Abhishek, Touba, Nur A..  2019.  A Graph Theory Approach towards IJTAG Security via Controlled Scan Chain Isolation. 2019 IEEE 37th VLSI Test Symposium (VTS). :1—6.

The IEEE Std. 1687 (IJTAG) was designed to provide on-chip access to the various embedded instruments (e.g. built-in self test, sensors, etc.) in complex system-on-chip designs. IJTAG facilitates access to on-chip instruments from third party intellectual property providers with hidden test-data registers. Although access to on-chip instruments provides valuable data specifically for debug and diagnosis, it can potentially expose the design to untrusted sources and instruments that can sniff and possibly manipulate the data that is being shifted through the IJTAG network. This paper provides a comprehensive protection scheme against data sniffing and data integrity attacks by selectively isolating the data flowing through the IJTAG network. The proposed scheme is modeled as a graph coloring problem to optimize the number of isolation signals required to protect the design. It is shown that combining the proposed approach with other existing schemes can also bolster the security against unauthorized user access as well. The proposed countermeasure is shown to add minimal overhead in terms of area and power consumption.

Saksupapchon, Punyapat, Willoughby, Kelvin W..  2019.  Contextual Factors Affecting Decisions About Intellectual Property Licensing Provisions in Collaboration Agreements for Open Innovation Projects of Complex Technological Organizations. 2019 IEEE International Symposium on Innovation and Entrepreneurship (TEMS-ISIE). :1—2.

Firms collaborate with partners in research and development (R&D) of new technologies for many reasons such as to access complementary knowledge, know-how or skills, to seek new opportunities outside their traditional technology domain, to sustain their continuous flows of innovation, to reduce time to market, or to share risks and costs [1]. The adoption of collaborative research agreements (CRAs) or collaboration agreements (CAs) is rising rapidly as firms attempt to access innovation from various types of organizations to enhance their traditional in-house innovation [2], [3]. To achieve the objectives of their collaborations, firms need to share knowledge and jointly develop new knowledge. As more firms adopt open collaborative innovation strategies, intellectual property (IP) management has inevitably become important because clear and fair contractual IP terms and conditions such as IP ownership allocation, licensing arrangements and compensation for IP access are required for each collaborative project [4], [5]. Moreover, the firms need to adjust their IP management strategies to fit the unique characteristics and circumstances of each particular project [5].