Visible to the public Biblio

Found 4254 results

Filters: Keyword is security  [Clear All Filters]
2020-12-15
Boche, H., Cai, M., Wiese, M., Deppe, C., Ferrara, R..  2020.  Semantic Security for Quantum Wiretap Channels. 2020 IEEE International Symposium on Information Theory (ISIT). :1990—1995.

We determine the semantic security capacity for quantum wiretap channels. We extend methods for classical channels to quantum channels to demonstrate that a strongly secure code guarantees a semantically secure code with the same secrecy rate. Furthermore, we show how to transform a non-secure code into a semantically secure code by means of biregular irreducible functions (BRI functions). We analyze semantic security for classical-quantum channels and for quantum channels.

Cribbs, M., Romero, R., Ha, T..  2020.  Orthogonal STBC Set Building and Physical Layer Security Application. 2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). :1—5.
Given a selected complex orthogonal space-time block code (STBC), transformation algorithms are provided to build a set, S, of unique orthogonal STBCs with cardinality equal to \textbackslashtextbarS\textbackslashtextbar = 2r+c+k-1·r!·c!, where r, c, and k are the number of rows, columns, and data symbols in the STBC matrix, respectively. A communications link is discussed that encodes data symbols with a chosen STBC from the set known only to the transmitter and intended receiver as a means of providing physical layer security (PLS). Expected bit error rate (BER) and informationtheoretic results for an eavesdropper with a priori knowledge of the communications link parameters with the exception of the chosen STBC are presented. Monte Carlo simulations are provided to confirm the possible BER results expected when decoding the communications link with alternative STBCs from the set. Application of the transformation algorithms provided herein are shown to significantly increase the brute force decoding complexity of an eavesdropper compared to a related work in the literature.
Frank, A..  2020.  Delay-Optimal Coding for Secure Transmission over Parallel Burst Erasure Channels with an Eavesdropper. 2020 IEEE International Symposium on Information Theory (ISIT). :960—965.

For streaming applications, we consider parallel burst erasure channels in the presence of an eavesdropper. The legitimate receiver must perfectly recover each source symbol subject to a decoding delay constraint without the eavesdropper gaining any information from his observation. For a certain class of code parameters, we propose delay-optimal M-link codes that recover multiple bursts of erasures of a limited length, and where the codes provide perfect security even if the eavesdropper can observe a link of his choice. Our codes achieve the maximum secrecy rate for the channel model.

Li, S., Yu, M., Yang, C.-S., Avestimehr, A. S., Kannan, S., Viswanath, P..  2020.  PolyShard: Coded Sharding Achieves Linearly Scaling Efficiency and Security Simultaneously. 2020 IEEE International Symposium on Information Theory (ISIT). :203—208.
Today's blockchain designs suffer from a trilemma claiming that no blockchain system can simultaneously achieve decentralization, security, and performance scalability. For current blockchain systems, as more nodes join the network, the efficiency of the system (computation, communication, and storage) stays constant at best. A leading idea for enabling blockchains to scale efficiency is the notion of sharding: different subsets of nodes handle different portions of the blockchain, thereby reducing the load for each individual node. However, existing sharding proposals achieve efficiency scaling by compromising on trust - corrupting the nodes in a given shard will lead to the permanent loss of the corresponding portion of data. In this paper, we settle the trilemma by demonstrating a new protocol for coded storage and computation in blockchains. In particular, we propose PolyShard: "polynomially coded sharding" scheme that achieves information-theoretic upper bounds on the efficiency of the storage, system throughput, as well as on trust, thus enabling a truly scalable system.
2020-12-14
Boualouache, A., Soua, R., Engel, T..  2020.  SDN-based Misbehavior Detection System for Vehicular Networks. 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). :1–5.
Vehicular networks are vulnerable to a variety of internal attacks. Misbehavior Detection Systems (MDS) are preferred over the cryptography solutions to detect such attacks. However, the existing misbehavior detection systems are static and do not adapt to the context of vehicles. To this end, we exploit the Software-Defined Networking (SDN) paradigm to propose a context-aware MDS. Based on the context, our proposed system can tune security parameters to provide accurate detection with low false positives. Our system is Sybil attack-resistant and compliant with vehicular privacy standards. The simulation results show that, under different contexts, our system provides a high detection ratio and low false positives compared to a static MDS.
Quevedo, C. H. O. O., Quevedo, A. M. B. C., Campos, G. A., Gomes, R. L., Celestino, J., Serhrouchni, A..  2020.  An Intelligent Mechanism for Sybil Attacks Detection in VANETs. ICC 2020 - 2020 IEEE International Conference on Communications (ICC). :1–6.
Vehicular Ad Hoc Networks (VANETs) have a strategic goal to achieve service delivery in roads and smart cities, considering the integration and communication between vehicles, sensors and fixed road-side components (routers, gateways and services). VANETs have singular characteristics such as fast mobile nodes, self-organization, distributed network and frequently changing topology. Despite the recent evolution of VANETs, security, data integrity and users privacy information are major concerns, since attacks prevention is still open issue. One of the most dangerous attacks in VANETs is the Sybil, which forges false identities in the network to disrupt compromise the communication between the network nodes. Sybil attacks affect the service delivery related to road safety, traffic congestion, multimedia entertainment and others. Thus, VANETs claim for security mechanism to prevent Sybil attacks. Within this context, this paper proposes a mechanism, called SyDVELM, to detect Sybil attacks in VANETs based on artificial intelligence techniques. The SyDVELM mechanism uses Extreme Learning Machine (ELM) with occasional features of vehicular nodes, minimizing the identification time, maximizing the detection accuracy and improving the scalability. The results suggest that the suitability of SyDVELM mechanism to mitigate Sybil attacks and to maintain the service delivery in VANETs.
Pandey, S., Singh, V..  2020.  Blackhole Attack Detection Using Machine Learning Approach on MANET. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). :797–802.

Mobile Ad-hoc Network (MANET) consists of different configurations, where it deals with the dynamic nature of its creation and also it is a self-configurable type of a network. The primary task in this type of networks is to develop a mechanism for routing that gives a high QoS parameter because of the nature of ad-hoc network. The Ad-hoc-on-Demand Distance Vector (AODV) used here is the on-demand routing mechanism for the computation of the trust. The proposed approach uses the Artificial neural network (ANN) and the Support Vector Machine (SVM) for the discovery of the black hole attacks in the network. The results are carried out between the black hole AODV and the security mechanism provided by us as the Secure AODV (SAODV). The results were tested on different number of nodes, at last, it has been experimented for 100 nodes which provide an improvement in energy consumption of 54.72%, the throughput is 88.68kbps, packet delivery ratio is 92.91% and the E to E delay is of about 37.27ms.

2020-12-11
Zhang, L., Shen, X., Zhang, F., Ren, M., Ge, B., Li, B..  2019.  Anomaly Detection for Power Grid Based on Time Series Model. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :188—192.

In the process of informationization and networking of smart grids, the original physical isolation was broken, potential risks increased, and the increasingly serious cyber security situation was faced. Therefore, it is critical to develop accuracy and efficient anomaly detection methods to disclose various threats. However, in the industry, mainstream security devices such as firewalls are not able to detect and resist some advanced behavior attacks. In this paper, we propose a time series anomaly detection model, which is based on the periodic extraction method of discrete Fourier transform, and determines the sequence position of each element in the period by periodic overlapping mapping, thereby accurately describe the timing relationship between each network message. The experiments demonstrate that our model can detect cyber attacks such as man-in-the-middle, malicious injection, and Dos in a highly periodic network.

Huang, Y., Wang, Y..  2019.  Multi-format speech perception hashing based on time-frequency parameter fusion of energy zero ratio and frequency band variance. 2019 3rd International Conference on Electronic Information Technology and Computer Engineering (EITCE). :243—251.

In order to solve the problems of the existing speech content authentication algorithm, such as single format, ununiversal algorithm, low security, low accuracy of tamper detection and location in small-scale, a multi-format speech perception hashing based on time-frequency parameter fusion of energy zero ratio and frequency band bariance is proposed. Firstly, the algorithm preprocesses the processed speech signal and calculates the short-time logarithmic energy, zero-crossing rate and frequency band variance of each speech fragment. Then calculate the energy to zero ratio of each frame, perform time- frequency parameter fusion on time-frequency features by mean filtering, and the time-frequency parameters are constructed by difference hashing method. Finally, the hash sequence is scrambled with equal length by logistic chaotic map, so as to improve the security of the hash sequence in the transmission process. Experiments show that the proposed algorithm is robustness, discrimination and key dependent.

Hassan, S. U., Khan, M. Zeeshan, Khan, M. U. Ghani, Saleem, S..  2019.  Robust Sound Classification for Surveillance using Time Frequency Audio Features. 2019 International Conference on Communication Technologies (ComTech). :13—18.

Over the years, technology has reformed the perception of the world related to security concerns. To tackle security problems, we proposed a system capable of detecting security alerts. System encompass audio events that occur as an outlier against background of unusual activity. This ambiguous behaviour can be handled by auditory classification. In this paper, we have discussed two techniques of extracting features from sound data including: time-based and signal based features. In first technique, we preserve time-series nature of sound, while in other signal characteristics are focused. Convolution neural network is applied for categorization of sound. Major aim of research is security challenges, so we have generated data related to surveillance in addition to available datasets such as UrbanSound 8k and ESC-50 datasets. We have achieved 94.6% accuracy for proposed methodology based on self-generated dataset. Improved accuracy on locally prepared dataset demonstrates novelty in research.

Han, Y., Zhang, W., Wei, J., Liu, X., Ye, S..  2019.  The Study and Application of Security Control Plan Incorporating Frequency Stability (SCPIFS) in CPS-Featured Interconnected Asynchronous Grids. 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :349—354.

The CPS-featured modern asynchronous grids interconnected with HVDC tie-lines facing the hazards from bulk power imbalance shock. With the aid of cyber layer, the SCPIFS incorporates the frequency stability constrains is put forwarded. When there is bulk power imbalance caused by HVDC tie-lines block incident or unplanned loads increasing, the proposed SCPIFS ensures the safety and frequency stability of both grids at two terminals of the HVDC tie-line, also keeps the grids operate economically. To keep frequency stability, the controllable variables in security control strategy include loads, generators outputs and the power transferred in HVDC tie-lines. McCormick envelope method and ADMM are introduced to solve the proposed SCPIFS optimization model. Case studies of two-area benchmark system verify the safety and economical benefits of the SCPFS. HVDC tie-line transferred power can take the advantage of low cost generator resource of both sides utmost and avoid the load shedding via tuning the power transferred through the operating tie-lines, thus the operation of both connected asynchronous grids is within the limit of frequency stability domain.

Geng, J., Yu, B., Shen, C., Zhang, H., Liu, Z., Wan, P., Chen, Z..  2019.  Modeling Digital Low-Dropout Regulator with a Multiple Sampling Frequency Circuit Technology. 2019 IEEE 13th International Conference on Anti-counterfeiting, Security, and Identification (ASID). :207—210.

The digital low dropout regulators are widely used because it can operate at low supply voltage. In the digital low drop-out regulators, the high sampling frequency circuit has a short setup time, but it will produce overshoot, and then the output can be stabilized; although the low sampling frequency circuit output can be directly stabilized, the setup time is too long. This paper proposes a two sampling frequency circuit model, which aims to include the high and low sampling frequencies in the same circuit. By controlling the sampling frequency of the circuit under different conditions, this allows the circuit to combine the advantages of the circuit operating at different sampling frequencies. This shortens the circuit setup time and the stabilization time at the same time.

Fujiwara, N., Shimasaki, K., Jiang, M., Takaki, T., Ishii, I..  2019.  A Real-time Drone Surveillance System Using Pixel-level Short-time Fourier Transform. 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). :303—308.

In this study we propose a novel method for drone surveillance that can simultaneously analyze time-frequency responses in all pixels of a high-frame-rate video. The propellers of flying drones rotate at hundreds of Hz and their principal vibration frequency components are much higher than those of their background objects. To separate the pixels around a drone's propellers from its background, we utilize these time-series features for vibration source localization with pixel-level short-time Fourier transform (STFT). We verify the relationship between the number of taps in the STFT computation and the performance of our algorithm, including the execution time and the localization accuracy, by conducting experiments under various conditions, such as degraded appearance, weather, and defocused blur. The robustness of the proposed algorithm is also verified by localizing a flying multi-copter in real-time in an outdoor scenario.

Kousri, M. R., Deniau, V., Gransart, C., Villain, J..  2019.  Optimized Time-Frequency Processing Dedicated to the Detection of Jamming Attacks on Wi-Fi Communications. 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC). :1—4.

Attacks by Jamming on wireless communication network can provoke Denial of Services. According to the communication system which is affected, the consequences can be more or less critical. In this paper, we propose to develop an algorithm which could be implemented at the reception stage of a communication terminal in order to detect the presence of jamming signals. The work is performed on Wi-Fi communication signals and demonstrates the necessity to have a specific signal processing at the reception stage to be able to detect the presence of jamming signals.

Li, J., Liu, H., Wu, J., Zhu, J., Huifeng, Y., Rui, X..  2019.  Research on Nonlinear Frequency Hopping Communication Under Big Data. 2019 International Conference on Computer Network, Electronic and Automation (ICCNEA). :349—354.

Aiming at the problems of poor stability and low accuracy of current communication data informatization processing methods, this paper proposes a research on nonlinear frequency hopping communication data informatization under the framework of big data security evaluation. By adding a frequency hopping mediation module to the frequency hopping communication safety evaluation framework, the communication interference information is discretely processed, and the data parameters of the nonlinear frequency hopping communication data are corrected and converted by combining a fast clustering analysis algorithm, so that the informatization processing of the nonlinear frequency hopping communication data under the big data safety evaluation framework is completed. Finally, experiments prove that the research on data informatization of nonlinear frequency hopping communication under the framework of big data security evaluation could effectively improve the accuracy and stability.

Ma, X., Sun, X., Cheng, L., Guo, X., Liu, X., Wang, Z..  2019.  Parameter Setting of New Energy Sources Generator Rapid Frequency Response in Northwest Power Grid Based on Multi-Frequency Regulation Resources Coordinated Controlling. 2019 IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP). :218—222.
Since 2016, the northwest power grid has organized new energy sources to participate in the rapid frequency regulation research and carried out pilot test work at the sending end large power grid. The experimental results show that new energy generator has the ability to participate in the grid's rapid frequency regulation, and its performance is better than that of conventional power supply units. This paper analyses the requirements for fast frequency control of the sending end large power grid in northwest China, and proposes the segmented participation indexes of photovoltaic and wind power in the frequency regulation of power grids. In accordance with the idea of "clear responsibilities, various types of unit coordination", the parameter setting of new energy sources rapid frequency regulation is completed based on the coordinated control based on multi-frequency regulation resources in northwest power grid. The new energy fast frequency regulation model was established, through the PSASP power grid stability simulation program and the large-scale power grid stability simulation analysis was completed. The simulation results show that the wind power and photovoltaic adopting differential rapid frequency regulation parameters can better utilize the rapid frequency regulation capability of various types of power sources, realize the coordinated rapid frequency regulation of all types of units, and effectively improve the frequency security prevention and control level of the sending end large power grid.
Abratkiewicz, K., Gromek, D., Samczynski, P..  2019.  Chirp Rate Estimation and micro-Doppler Signatures for Pedestrian Security Radar Systems. 2019 Signal Processing Symposium (SPSympo). :212—215.

A new approach to micro-Doppler signal analysis is presented in this article. Novel chirp rate estimators in the time-frequency domain were used for this purpose, which provided the chirp rate of micro-Doppler signatures, allowing the classification of objects in the urban environment. As an example verifying the method, a signal from a high-resolution radar with a linear frequency modulated continuous wave (FMCW) recording an echo reflected from a pedestrian was used to validate the proposed algorithms for chirp rate estimation. The obtained results are plotted on saturated accelerograms, giving an additional parameter dedicated for target classification in security systems utilizing radar sensors for target detection.

Huang, N., Xu, M., Zheng, N., Qiao, T., Choo, K. R..  2019.  Deep Android Malware Classification with API-Based Feature Graph. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :296—303.

The rapid growth of Android malware apps poses a great security threat to users thus it is very important and urgent to detect Android malware effectively. What's more, the increasing unknown malware and evasion technique also call for novel detection method. In this paper, we focus on API feature and develop a novel method to detect Android malware. First, we propose a novel selection method for API feature related with the malware class. However, such API also has a legitimate use in benign app thus causing FP problem (misclassify benign as malware). Second, we further explore structure relationships between these APIs and map to a matrix interpreted as the hand-refined API-based feature graph. Third, a CNN-based classifier is developed for the API-based feature graph classification. Evaluations of a real-world dataset containing 3,697 malware apps and 3,312 benign apps demonstrate that selected API feature is effective for Android malware classification, just top 20 APIs can achieve high F1 of 94.3% under Random Forest classifier. When the available API features are few, classification performance including FPR indicator can achieve effective improvement effectively by complementing our further work.

Abusnaina, A., Khormali, A., Alasmary, H., Park, J., Anwar, A., Mohaisen, A..  2019.  Adversarial Learning Attacks on Graph-based IoT Malware Detection Systems. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1296—1305.

IoT malware detection using control flow graph (CFG)-based features and deep learning networks are widely explored. The main goal of this study is to investigate the robustness of such models against adversarial learning. We designed two approaches to craft adversarial IoT software: off-the-shelf methods and Graph Embedding and Augmentation (GEA) method. In the off-the-shelf adversarial learning attack methods, we examine eight different adversarial learning methods to force the model to misclassification. The GEA approach aims to preserve the functionality and practicality of the generated adversarial sample through a careful embedding of a benign sample to a malicious one. Intensive experiments are conducted to evaluate the performance of the proposed method, showing that off-the-shelf adversarial attack methods are able to achieve a misclassification rate of 100%. In addition, we observed that the GEA approach is able to misclassify all IoT malware samples as benign. The findings of this work highlight the essential need for more robust detection tools against adversarial learning, including features that are not easy to manipulate, unlike CFG-based features. The implications of the study are quite broad, since the approach challenged in this work is widely used for other applications using graphs.

Fan, M., Luo, X., Liu, J., Wang, M., Nong, C., Zheng, Q., Liu, T..  2019.  Graph Embedding Based Familial Analysis of Android Malware using Unsupervised Learning. 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). :771—782.

The rapid growth of Android malware has posed severe security threats to smartphone users. On the basis of the familial trait of Android malware observed by previous work, the familial analysis is a promising way to help analysts better focus on the commonalities of malware samples within the same families, thus reducing the analytical workload and accelerating malware analysis. The majority of existing approaches rely on supervised learning and face three main challenges, i.e., low accuracy, low efficiency, and the lack of labeled dataset. To address these challenges, we first construct a fine-grained behavior model by abstracting the program semantics into a set of subgraphs. Then, we propose SRA, a novel feature that depicts the similarity relationships between the Structural Roles of sensitive API call nodes in subgraphs. An SRA is obtained based on graph embedding techniques and represented as a vector, thus we can effectively reduce the high complexity of graph matching. After that, instead of training a classifier with labeled samples, we construct malware link network based on SRAs and apply community detection algorithms on it to group the unlabeled samples into groups. We implement these ideas in a system called GefDroid that performs Graph embedding based familial analysis of AnDroid malware using unsupervised learning. Moreover, we conduct extensive experiments to evaluate GefDroid on three datasets with ground truth. The results show that GefDroid can achieve high agreements (0.707-0.883 in term of NMI) between the clustering results and the ground truth. Furthermore, GefDroid requires only linear run-time overhead and takes around 8.6s to analyze a sample on average, which is considerably faster than the previous work.

2020-12-07
Labib, N. S., Brust, M. R., Danoy, G., Bouvry, P..  2019.  Trustworthiness in IoT – A Standards Gap Analysis on Security, Data Protection and Privacy. 2019 IEEE Conference on Standards for Communications and Networking (CSCN). :1–7.
With the emergence of new digital trends like Internet of Things (IoT), more industry actors and technical committees pursue research in utilising such technologies as they promise a better and optimised management, improved energy efficiency and a better quality living through a wide array of value-added services. However, as sensing, actuation, communication and control become increasingly more sophisticated, such promising data-driven systems generate, process, and exchange larger amounts of security-critical and privacy-sensitive data, which makes them attractive targets of attacks. In turn this affirms the importance of trustworthiness in IoT and emphasises the need of a solid technical and regulatory foundation. The goal of this paper is to first introduce the concept of trustworthiness in IoT, its main pillars namely, security, privacy and data protection, and then analyse the state-of-the-art in research and standardisation for each of these subareas. Throughout the paper, we develop and refer to Unmanned Aerial Vehicles (UAVs) as a promising value-added service example of mobile IoT devices. The paper then presents a thorough gap analysis and concludes with recommendations for future work.
More, P. H., Dongre, M. M..  2019.  Partially Predictable Vehicular Ad-hoc Network: Trustworthiness and Security. 2019 IEEE 5th International Conference for Convergence in Technology (I2CT). :1–5.
VANET is an emerging technology incorporating ad hoc network to accomplish intelligent communications between vehicles, improvement in road traffic efficiency and safety. In some situations movement of vehicles is in a certain range, over particular distance or just in a specific tendency. Such a network can be called as incompletely or partially predictable network. An efficient use of such network, position and motion of nodes as well as relative history in big data is an open issue in vehicular ad hoc network. A hybrid protocol which provides secure and trustworthiness evaluation based routing can be used in VANET. Here Secure Trustworthiness Evaluation Based Routing Protocol is implemented using NS2 software. Its performance is very good in terms of the Average End to End Delay, Packet Delivery Ratio and Normalized Routing Overhead.
Islam, M. S., Verma, H., Khan, L., Kantarcioglu, M..  2019.  Secure Real-Time Heterogeneous IoT Data Management System. 2019 First IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). :228–235.
The growing adoption of IoT devices in our daily life engendered a need for secure systems to safely store and analyze sensitive data as well as the real-time data processing system to be as fast as possible. The cloud services used to store and process sensitive data are often come out to be vulnerable to outside threats. Furthermore, to analyze streaming IoT data swiftly, they are in need of a fast and efficient system. The Paper will envision the aspects of complexity dealing with real time data from various devices in parallel, building solution to ingest data from different IOT devices, forming a secure platform to process data in a short time, and using various techniques of IOT edge computing to provide meaningful intuitive results to users. The paper envisions two modules of building a real time data analytics system. In the first module, we propose to maintain confidentiality and integrity of IoT data, which is of paramount importance, and manage large-scale data analytics with real-time data collection from various IoT devices in parallel. We envision a framework to preserve data privacy utilizing Trusted Execution Environment (TEE) such as Intel SGX, end-to-end data encryption mechanism, and strong access control policies. Moreover, we design a generic framework to simplify the process of collecting and storing heterogeneous data coming from diverse IoT devices. In the second module, we envision a drone-based data processing system in real-time using edge computing and on-device computing. As, we know the use of drones is growing rapidly across many application domains including real-time monitoring, remote sensing, search and rescue, delivery of goods, security and surveillance, civil infrastructure inspection etc. This paper demonstrates the potential drone applications and their challenges discussing current research trends and provide future insights for potential use cases using edge and on-device computing.
2020-11-23
Gao, Y., Li, X., Li, J., Gao, Y., Guo, N..  2018.  Graph Mining-based Trust Evaluation Mechanism with Multidimensional Features for Large-scale Heterogeneous Threat Intelligence. 2018 IEEE International Conference on Big Data (Big Data). :1272–1277.
More and more organizations and individuals start to pay attention to real-time threat intelligence to protect themselves from the complicated, organized, persistent and weaponized cyber attacks. However, most users worry about the trustworthiness of threat intelligence provided by TISPs (Threat Intelligence Sharing Platforms). The trust evaluation mechanism has become a hot topic in applications of TISPs. However, most current TISPs do not present any practical solution for trust evaluation of threat intelligence itself. In this paper, we propose a graph mining-based trust evaluation mechanism with multidimensional features for large-scale heterogeneous threat intelligence. This mechanism provides a feasible scheme and achieves the task of trust evaluation for TISP, through the integration of a trust-aware intelligence architecture model, a graph mining-based intelligence feature extraction method, and an automatic and interpretable trust evaluation algorithm. We implement this trust evaluation mechanism in a practical TISP (called GTTI), and evaluate the performance of our system on a real-world dataset from three popular cyber threat intelligence sharing platforms. Experimental results show that our mechanism can achieve 92.83% precision and 93.84% recall in trust evaluation. To the best of our knowledge, this work is the first to evaluate the trust level of heterogeneous threat intelligence automatically from the perspective of graph mining with multidimensional features including source, content, time, and feedback. Our work is beneficial to provide assistance on intelligence quality for the decision-making of human analysts, build a trust-aware threat intelligence sharing platform, and enhance the availability of heterogeneous threat intelligence to protect organizations against cyberspace attacks effectively.
Haddad, G. El, Aïmeur, E., Hage, H..  2018.  Understanding Trust, Privacy and Financial Fears in Online Payment. 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :28–36.
In online payment, customers must transmit their personal and financial information through the website to conclude their purchase and pay the services or items selected. They may face possible fears from online transactions raised by their risk perception about financial or privacy loss. They may have concerns over the payment decision with the possible negative behaviors such as shopping cart abandonment. Therefore, customers have three major players that need to be addressed in online payment: the online seller, the payment page, and their own perception. However, few studies have explored these three players in an online purchasing environment. In this paper, we focus on the customer concerns and examine the antecedents of trust, payment security perception as well as their joint effect on two fundamentally important customers' aspects privacy concerns and financial fear perception. A total of 392 individuals participated in an online survey. The results highlight the importance, of the seller website's components (such as ease of use, security signs, and quality information) and their impact on the perceived payment security as well as their impact on customer's trust and financial fear perception. The objective of our study is to design a research model that explains the factors contributing to an online payment decision.