Biblio
The use of biometrics in security applications may be vulnerable to several challenges of hacking. Thus, the emergence of cancellable biometrics becomes a suitable solution to this problem. This paper presents a one-way cancellable biometric transform that depends on 3D chaotic maps for face and fingerprint encryption. It aims to avoid cloning of original biometrics and allow the templates used by each user in different applications to be variable. The permutations achieved with the chaotic maps guarantee high security of the biometric templates, especially with the 3D implementation of the encryption algorithm. In addition, the paper presents a hardware implementation for this framework. The proposed algorithm also achieves good performance in the presence of low and moderate levels of noise. An experimental version of the proposed cancellable biometric system has been applied on FPGA model. The obtained results achieve a powerful performance of the proposed cancellable biometric system.
In network communication domain, one of the most widely used protocol for encrypting data and securing communications is the IPSec protocol. The design of this protocol is based on two main phases which are: exchanging keys phase and transferring data phase. In this paper we focus on enhancing the exchanging keys phase which is included in the security association (SA), using a chaotic cryptosystem. Initially IPSec is based on the Internet Key Exchange (IKE) protocol for establishing the SA. Actually IKE protocol is in charge for negotiating the connection and for authenticating both nodes. However; using IKE gives rise to a major problem related to security attack such as the Man in the Middle Attack. In this paper, we propose a chaotic cryptosystem solution to generate SA file for the connected nodes of the network. By solving a 4-Dimension chaotic system, a SA file that includes 128-bit keys will be established. The proposed solution is implemented and tested using FPGA boards.
In this work, an asymmetric cryptography method for information security was developed, inspired by the fact that the human body generates chaotic signals, and these signals can be used to create sequences of random numbers. Encryption circuit was implemented in a Reconfigurable Hardware (FPGA). To encode and decode an image, the chaotic synchronization between two dynamic systems, such as Hopfield neural networks (HNNs), was used to simulate chaotic signals. The notion of Homotopy, an argument of topological nature, was used for the synchronization. The results show efficiency when compared to state of the art, in terms of image correlation, histogram analysis and hardware implementation.
RISC-V is free and open standard instruction set architecture following reduced instruction set computer principle. Because of its openness and scalability, RISC-V has been adapted not only for embedded CPUs such as mobile and IoT market, but also for heavy-workload CPUs such as the data center or super computing field. On top of it, Robotics is also a good application of RISC-V because security and reliability become crucial issues of robotics system. These problems could be solved by enthusiastic open source community members as they have shown on open source operating system. However, running RISC-V on local FPGA becomes harder than before because now RISC-V foundation are focusing on cloud-based FPGA environment. We have experienced that recently released OS and toolchains for RISC-V are not working well on the previous CPU image for local FPGA. In this paper we design the local FPGA platform for RISC-V processor and run the robotics application on mainstream Robot Operating System on top of the RISC-V processor. This platform allow us to explore the architecture space of RISC-V CPU for robotics application, and get the insight of the RISC-V CPU architecture for optimal performance and the secure system.
Nowadays big data has getting more and more attention in both the academic and the industrial research. With the development of big data, people pay more attention to data security. A significant feature of big data is the large size of the data. In order to improve the encryption speed of the large size of data, this paper uses the deep pipeline and full expansion technology to implement the AES encryption algorithm on FPGA. Achieved throughput of 31.30 Gbps with a minimum latency of 0.134 us. This design can quickly encrypt large amounts of data and provide technical support for the development of big data.
Modern multicore System-on-Chips (SoCs) are regularly designed with third-party Intellectual Properties (IPs) and software tools to manage the complexity and development cost. This approach naturally introduces major security concerns, especially for those SoCs used in critical applications and cyberinfrastructure. Despite approaches like split manufacturing, security testing and hardware metering, this remains an open and challenging problem. In this work, we propose a dynamic intrusion detection approach to address the security challenge. The proposed runtime system (SoCINT) systematically gathers information about untrusted IPs and strictly enforces the access policies. SoCINT surpasses the-state-of-the-art monitoring systems by supporting hardware tracing, for more robust analysis, together with providing smart counterintelligence strategies. SoCINT is implemented in an open source processor running on a commercial FPGA platform. The evaluation results validate our claims by demonstrating resilience against attacks exploiting erroneous or malicious IPs.
Security concerns for field-programmable gate array (FPGA) applications and hardware are evolving as FPGA designs grow in complexity, involve sophisticated intellectual properties (IPs), and pass through more entities in the design and implementation flow. FPGAs are now routinely found integrated into system-on-chip (SoC) platforms, cloud-based shared computing resources, and in commercial and government systems. The IPs included in FPGAs are sourced from multiple origins and passed through numerous entities (such as design house, system integrator, and users) through the lifecycle. This paper thoroughly examines the interaction of these entities from the perspective of the bitstream file responsible for the actual hardware configuration of the FPGA. Five stages of the bitstream lifecycle are introduced to analyze this interaction: 1) bitstream-generation, 2) bitstream-at-rest, 3) bitstream-loading, 4) bitstream-running, and 5) bitstream-end-of-life. Potential threats and vulnerabilities are discussed at each stage, and both vendor-offered and academic countermeasures are highlighted for a robust and comprehensive security assurance.
A parallel brute force attack on RC4 algorithm based on FPGA (Field Programmable Gate Array) with an efficient style has been presented. The main idea of this design is to use number of forecast keying methods to reduce the overall clock pulses required depended to key searching operation by utilizes on-chip BRAMs (block RAMs) of FPGA for maximizing the total number of key searching unit with taking into account the highest clock rate. Depending on scheme, 32 key searching units and main controller will be used in one Xilinx XC3S1600E-4 FPGA device, all these units working in parallel and each unit will be searching in a specific range of keys, by comparing the current result with the well-known cipher text if its match the found flag signal will change from 0 to 1 and the main controller will receive this signal and stop the searching operation. This scheme operating at 128-MHz clock frequency and gives us key searching speed of 7.7 × 106 keys/sec. Testing all possible keys (40-bits length), requires only around 39.5h.
This paper presents a scheme of intellectual property protection of hardware circuit based on digital compression coding technology. The aim is to solve the problem of high embedding cost and low resource utilization of IP watermarking. In this scheme, the watermark information is preprocessed by dynamic compression coding around the idle circuit of FPGA, and the free resources of the surrounding circuit are optimized that the IP watermark can get the best compression coding model while the extraction and detection of IP core watermark by activating the decoding function. The experimental results show that this method not only expands the capacity of watermark information, but also reduces the cost of watermark and improves the security and robustness of watermark algorithm.