Visible to the public Biblio

Found 279 results

Filters: Keyword is Routing protocols  [Clear All Filters]
2018-02-28
Zhang, N., Sirbu, M. A., Peha, J. M..  2017.  A comparison of migration and multihoming support in IPv6 and XIA. 2017 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.

Mobility and multihoming have become the norm in Internet access, e.g. smartphones with Wi-Fi and LTE, and connected vehicles with LTE and DSRC links that change rapidly. Mobility creates challenges for active session continuity when provider-aggregatable locators are used, while multihoming brings opportunities for improving resiliency and allocative efficiency. This paper proposes a novel migration protocol, in the context of the eXpressive Internet Architecture (XIA), the XIA Migration Protocol. We compare it with Mobile IPv6, with respect to handoff latency and overhead, flow migration support, and defense against spoofing and replay of protocol messages. Handoff latencies of the XIA Migration Protocol and Mobile IPv6 Enhanced Route Optimization are comparable and neither protocol opens up avenues for spoofing or replay attacks. However, XIA requires no mobility anchor point to support client mobility while Mobile IPv6 always depends on a home agent. We show that XIA has significant advantage over IPv6 for multihomed hosts and networks in terms of resiliency, scalability, load balancing and allocative efficiency. IPv6 multihoming solutions either forgo scalability (BGP-based) or sacrifice resiliency (NAT-based), while XIA's fallback-based multihoming provides fault tolerance without a heavy-weight protocol. XIA also allows fine-grained incoming load-balancing and QoS-matching by supporting flow migration. Flow migration is not possible using Mobile IPv6 when a single IPv6 address is associated with multiple flows. From a protocol design and architectural perspective, the key enablers of these benefits are flow-level migration, XIA's DAG-based locators and self-certifying identifiers.

Sagisi, J., Tront, J., Marchany, R..  2017.  System architectural design of a hardware engine for moving target IPv6 defense over IEEE 802.3 Ethernet. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :551–556.

The Department of Homeland Security Cyber Security Division (CSD) chose Moving Target Defense as one of the fourteen primary Technical Topic Areas pertinent to securing federal networks and the larger Internet. Moving Target Defense over IPv6 (MT6D) employs an obscuration technique offering keyed access to hosts at a network level without altering existing network infrastructure. This is accomplished through cryptographic dynamic addressing, whereby a new network address is bound to an interface every few seconds in a coordinated manner. The goal of this research is to produce a Register Transfer Level (RTL) network security processor implementation to enable the production of an Application Specific Integrated Circuit (ASIC) variant of MT6D processor for wide deployment. RTL development is challenging in that it must provide system level functions that are normally provided by the Operating System's kernel and supported libraries. This paper presents the architectural design of a hardware engine for MT6D (HE-MT6D) and is complete in simulation. Unique contributions are an inline stream-based network packet processor with a Complex Instruction Set Computer (CISC) architecture, Network Time Protocol listener, and theoretical increased performance over previous software implementations.

Ma, G., Li, X., Pei, Q., Li, Z..  2017.  A Security Routing Protocol for Internet of Things Based on RPL. 2017 International Conference on Networking and Network Applications (NaNA). :209–213.

RPL is a lightweight IPv6 network routing protocol specifically designed by IETF, which can make full use of the energy of intelligent devices and compute the resource to build the flexible topological structure. This paper analyzes the security problems of RPL, sets up a test network to test RPL network security, proposes a RPL based security routing protocol M-RPL. The routing protocol establishes a hierarchical clustering network topology, the intelligent device of the network establishes the backup path in different clusters during the route discovery phase, enable backup paths to ensure data routing when a network is compromised. Setting up a test prototype network, simulating some attacks against the routing protocols in the network. The test results show that the M-RPL network can effectively resist the routing attacks. M-RPL provides a solution to ensure the Internet of Things (IoT) security.

2018-02-21
Signorello, S., Marchal, S., François, J., Festor, O., State, R..  2017.  Advanced interest flooding attacks in named-data networking. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–10.

The Named-Data Networking (NDN) has emerged as a clean-slate Internet proposal on the wave of Information-Centric Networking. Although the NDN's data-plane seems to offer many advantages, e.g., native support for multicast communications and flow balance, it also makes the network infrastructure vulnerable to a specific DDoS attack, the Interest Flooding Attack (IFA). In IFAs, a botnet issuing unsatisfiable content requests can be set up effortlessly to exhaust routers' resources and cause a severe performance drop to legitimate users. So far several countermeasures have addressed this security threat, however, their efficacy was proved by means of simplistic assumptions on the attack model. Therefore, we propose a more complete attack model and design an advanced IFA. We show the efficiency of our novel attack scheme by extensively assessing some of the state-of-the-art countermeasures. Further, we release the software to perform this attack as open source tool to help design future more robust defense mechanisms.

Ippisch, A., Graffi, K..  2017.  Infrastructure Mode Based Opportunistic Networks on Android Devices. 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). :454–461.

Opportunistic Networks are delay-tolerant mobile networks with intermittent node contacts in which data is transferred with the store-carry-forward principle. Owners of smartphones and smart objects form such networks due to their social behaviour. Opportunistic Networking can be used in remote areas with no access to the Internet, to establish communication after disasters, in emergency situations or to bypass censorship, but also in parallel to familiar networking. In this work, we create a mobile network application that connects Android devices over Wi-Fi, offers identification and encryption, and gathers information for routing in the network. The network application is constructed in such a way that third party applications can use the network application as network layer to send and receive data packets. We create secure and reliable connections while maintaining a high transmission speed, and with the gathered information about the network we offer knowledge for state of the art routing protocols. We conduct tests on connectivity, transmission range and speed, battery life and encryption speed and show a proof of concept for routing in the network.

Macharla, D. R., Tejaskanda, S..  2017.  An enhanced three-layer clustering approach and security framework for battlefeld surveillance. 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS). :1–6.

Hierarchical based formation is one of the approaches widely used to minimize the energy consumption in which node with higher residual energy routes the data gathered. Several hierarchical works were proposed in the literature with two and three layered architectures. In the work presented in this paper, we propose an enhanced architecture for three layered hierarchical clustering based approach, which is referred to as enhanced three-layer hierarchical clustering approach (EHCA). The EHCA is based on an enhanced feature of the grid node in terms of its mobility. Further, in our proposed EHCA, we introduce distributed clustering technique for lower level head selection and incorporate security mechanism to detect the presence of any malicious node. We show by simulation results that our proposed EHCA reduces the energy consumption significantly and thus improves the lifetime of the network. Also, we highlight the appropriateness of the proposed EHCA for battlefield surveillance applications.

2018-02-15
Apostolaki, M., Zohar, A., Vanbever, L..  2017.  Hijacking Bitcoin: Routing Attacks on Cryptocurrencies. 2017 IEEE Symposium on Security and Privacy (SP). :375–392.

As the most successful cryptocurrency to date, Bitcoin constitutes a target of choice for attackers. While many attack vectors have already been uncovered, one important vector has been left out though: attacking the currency via the Internet routing infrastructure itself. Indeed, by manipulating routing advertisements (BGP hijacks) or by naturally intercepting traffic, Autonomous Systems (ASes) can intercept and manipulate a large fraction of Bitcoin traffic. This paper presents the first taxonomy of routing attacks and their impact on Bitcoin, considering both small-scale attacks, targeting individual nodes, and large-scale attacks, targeting the network as a whole. While challenging, we show that two key properties make routing attacks practical: (i) the efficiency of routing manipulation; and (ii) the significant centralization of Bitcoin in terms of mining and routing. Specifically, we find that any network attacker can hijack few (\textbackslashtextless;100) BGP prefixes to isolate 50% of the mining power-even when considering that mining pools are heavily multi-homed. We also show that on-path network attackers can considerably slow down block propagation by interfering with few key Bitcoin messages. We demonstrate the feasibility of each attack against the deployed Bitcoin software. We also quantify their effectiveness on the current Bitcoin topology using data collected from a Bitcoin supernode combined with BGP routing data. The potential damage to Bitcoin is worrying. By isolating parts of the network or delaying block propagation, attackers can cause a significant amount of mining power to be wasted, leading to revenue losses and enabling a wide range of exploits such as double spending. To prevent such effects in practice, we provide both short and long-term countermeasures, some of which can be deployed immediately.

2018-02-06
Andrea, K., Gumusalan, A., Simon, R., Harney, H..  2017.  The Design and Implementation of a Multicast Address Moving Target Defensive System for Internet-of-Things Applications. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :531–538.

Distributed Denial of Service (DDoS) attacks serve to diminish the ability of the network to perform its intended function over time. The paper presents the design, implementation and analysis of a protocol based upon a technique for address agility called DDoS Resistant Multicast (DRM). After describing the our architecture and implementation we show an analysis that quantifies the overhead on network performance. We then present the Simple Agile RPL multiCAST (SARCAST), an Internet-of-Things routing protocol for DDoS protection. We have implemented and evaluated SARCAST in a working IoT operating system and testbed. Our results show that SARCAST provides very high levels of protection against DDoS attacks with virtually no impact on overall performance.

2018-02-02
Noguchi, T., Yamamoto, T..  2017.  Black hole attack prevention method using dynamic threshold in mobile ad hoc networks. 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). :797–802.

A mobile ad hoc network (MANET) is a collection of mobile nodes that do not need to rely on a pre-existing network infrastructure or centralized administration. Securing MANETs is a serious concern as current research on MANETs continues to progress. Each node in a MANET acts as a router, forwarding data packets for other nodes and exchanging routing information between nodes. It is this intrinsic nature that introduces the serious security issues to routing protocols. A black hole attack is one of the well-known security threats for MANETs. A black hole is a security attack in which a malicious node absorbs all data packets by sending fake routing information and drops them without forwarding them. In order to defend against a black hole attack, in this paper we propose a new threshold-based black hole attack prevention method. To investigate the performance of the proposed method, we compared it with existing methods. Our simulation results show that the proposed method outperforms existing methods from the standpoints of black hole node detection rate, throughput, and packet delivery rate.

Mohapatra, S., Siddappa, M..  2017.  Enhancing security for load balanced energy enhanced clustered bee ad hoc network using secret public keys. 2017 International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). :343–348.

Mobile ad hoc network (MANET) is one of the most important and unique network in wireless network which has brought maximum mobility and scalability. It is suitable for environments that need on fly setup. A lot of challenges come with implementing these networks. The most sensitive challenge that MANET faces is making the MANET energy efficient at the same time handling the security issues. In this paper we are going to discuss the best routing for maximum energy saving which is Load Balanced Energy Enhanced Clustered Bee Ad Hoc Routing (LBEE) along with secured PKI scheme. LBEE which is inspired from swarm intelligence and follows the bee colony paradigm has been found as the best energy efficient method for the MANETs. In this paper along with energy efficiency care has been taken for security of all the nodes of the network. The best suiting security for the protocol has been chosen as the four key security scheme.

2018-01-16
Nagar, S., Rajput, S. S., Gupta, A. K., Trivedi, M. C..  2017.  Secure routing against DDoS attack in wireless sensor network. 2017 3rd International Conference on Computational Intelligence Communication Technology (CICT). :1–6.

Wireless sensor network is a low cost network to solve many of the real world problems. These sensor nodes used to deploy in the hostile or unattended areas to sense and monitor the atmospheric situations such as motion, pressure, sound, temperature and vibration etc. The sensor nodes have low energy and low computing power, any security scheme for wireless sensor network must not be computationally complex and it should be efficient. In this paper we introduced a secure routing protocol for WSNs, which is able to prevent the network from DDoS attack. In our methodology we scan the infected nodes using the proposed algorithm and block that node from any further activities in the network. To protect the network we use intrusion prevention scheme, where specific nodes of the network acts as IPS node. These nodes operate in their radio range for the region of the network and scan the neighbors regularly. When the IPS node find a misbehavior node which is involves in frequent message passing other than UDP and TCP messages, IPS node blocks the infected node and also send the information to all genuine sender nodes to change their routes. All simulation work has been done using NS 2.35. After simulation the proposed scheme gives feasible results to protect the network against DDoS attack. The performance parameters have been improved after applying the security mechanism on an infected network.

2017-12-12
Jiang, J., Chaczko, Z., Al-Doghman, F., Narantaka, W..  2017.  New LQR Protocols with Intrusion Detection Schemes for IOT Security. 2017 25th International Conference on Systems Engineering (ICSEng). :466–474.

Link quality protocols employ link quality estimators to collect statistics on the wireless link either independently or cooperatively among the sensor nodes. Furthermore, link quality routing protocols for wireless sensor networks may modify an estimator to meet their needs. Link quality estimators are vulnerable against malicious attacks that can exploit them. A malicious node may share false information with its neighboring sensor nodes to affect the computations of their estimation. Consequently, malicious node may behave maliciously such that its neighbors gather incorrect statistics about their wireless links. This paper aims to detect malicious nodes that manipulate the link quality estimator of the routing protocol. In order to accomplish this task, MINTROUTE and CTP routing protocols are selected and updated with intrusion detection schemes (IDSs) for further investigations with other factors. It is proved that these two routing protocols under scrutiny possess inherent susceptibilities, that are capable of interrupting the link quality calculations. Malicious nodes that abuse such vulnerabilities can be registered through operational detection mechanisms. The overall performance of the new LQR protocol with IDSs features is experimented, validated and represented via the detection rates and false alarm rates.

Islam, M. N., Patil, V. C., Kundu, S..  2017.  Determining proximal geolocation of IoT edge devices via covert channel. 2017 18th International Symposium on Quality Electronic Design (ISQED). :196–202.

Many IoT devices are part of fixed critical infrastructure, where the mere act of moving an IoT device may constitute an attack. Moving pressure, chemical and radiation sensors in a factory can have devastating consequences. Relocating roadside speed sensors, or smart meters without knowledge of command and control center can similarly wreck havoc. Consequently, authenticating geolocation of IoT devices is an important problem. Unfortunately, an IoT device itself may be compromised by an adversary. Hence, location information from the IoT device cannot be trusted. Thus, we have to rely on infrastructure to obtain a proximal location. Infrastructure routers may similarly be compromised. Therefore, there must be a way to authenticate trusted routers remotely. Unfortunately, IP packets may be blocked, hijacked or forged by an adversary. Therefore IP packets are not trustworthy either. Thus, we resort to covert channels for authenticating Internet packet routers as an intermediate step towards proximal geolocation of IoT devices. Several techniques have been proposed in the literature to obtain the geolocation of an edge device, but it has been shown that a knowledgeable adversary can circumvent these techniques. In this paper, we survey the state-of-the-art geolocation techniques and corresponding adversarial countermeasures to evade geolocation to justify the use of covert channels on networks. We propose a technique for determining proximal geolocation using covert channel. Challenges and directions for future work are also explored.

2017-04-20
Zhang, X., Gong, L., Xun, Y., Piao, X., Leit, K..  2016.  Centaur: A evolutionary design of hybrid NDN/IP transport architecture for streaming application. 2016 IEEE 7th Annual Ubiquitous Computing, Electronics Mobile Communication Conference (UEMCON). :1–7.

Named Data Networking (NDN), a clean-slate data oriented Internet architecture targeting on replacing IP, brings many potential benefits for content distribution. Real deployment of NDN is crucial to verify this new architecture and promote academic research, but work in this field is at an early stage. Due to the fundamental design paradigm difference between NDN and IP, Deploying NDN as IP overlay causes high overhead and inefficient transmission, typically in streaming applications. Aiming at achieving efficient NDN streaming distribution, this paper proposes a transitional architecture of NDN/IP hybrid network dubbed Centaur, which embodies both NDN's smartness, scalability and IP's transmission efficiency and deployment feasibility. In Centaur, the upper NDN module acts as the smart head while the lower IP module functions as the powerful feet. The head is intelligent in content retrieval and self-control, while the IP feet are able to transport large amount of media data faster than that if NDN directly overlaying on IP. To evaluate the performance of our proposal, we implement a real streaming prototype in ndnSIM and compare it with both NDN-Hippo and P2P under various experiment scenarios. The result shows that Centaur can achieve better load balance with lower overhead, which is close to the performance that ideal NDN can achieve. All of these validate that our proposal is a promising choice for the incremental and compatible deployment of NDN.

Bronzino, F., Raychaudhuri, D., Seskar, I..  2016.  Demonstrating Context-Aware Services in the Mobility First Future Internet Architecture. 2016 28th International Teletraffic Congress (ITC 28). 01:201–204.

As the amount of mobile devices populating the Internet keeps growing at tremendous pace, context-aware services have gained a lot of traction thanks to the wide set of potential use cases they can be applied to. Environmental sensing applications, emergency services, and location-aware messaging are just a few examples of applications that are expected to increase in popularity in the next few years. The MobilityFirst future Internet architecture, a clean-slate Internet architecture design, provides the necessary abstractions for creating and managing context-aware services. Starting from these abstractions we design a context services framework, which is based on a set of three fundamental mechanisms: an easy way to specify context based on human understandable techniques, i.e. use of names, an architecture supported management mechanism that allows both to conveniently deploy the service and efficiently provide management capabilities, and a native delivery system that reduces the tax on the network components and on the overhead cost of deploying such applications. In this paper, we present an emergency alert system for vehicles assisting first responders that exploits users location awareness to support quick and reliable alert messages for interested vehicles. By deploying a demo of the system on a nationwide testbed, we aim to provide better understanding of the dynamics involved in our designed framework.

Torres, J. V., Alvarenga, I. D., Pedroza, A. de Castro Pinto, Duarte, O. C. M. B..  2016.  Proposing, specifying, and validating a controller-based routing protocol for a clean-slate Named-Data Networking. 2016 7th International Conference on the Network of the Future (NOF). :1–5.

Named-Data Networking (NDN) is the most prominent proposal for a clean-slate proposal of Future Internet. Nevertheless, NDN routing schemes present scalability concerns due to the required number of stored routes and of control messages. In this work, we present a controller-based routing protocol using a formal method to unambiguously specify, and validate to prove its correctness. Our proposal codes signaling information on content names, avoiding control message overhead, and reduces router memory requirements, storing only the routes for simultaneously consumed prefixes. Additionally, the protocol installs a new route on all routers in a path with a single route request to the controller, avoiding replication of routing information and automating router provisioning. As a result, we provide a protocol proposal description using the Specification and Description Language and we validate the protocol, proving that CRoS behavior is free of dead or live locks. Furthermore, the protocol validation guarantees that the scheme ensures a valid working path from consumer to producer, even if it does not assure the shortest path.

2017-03-07
Rmayti, M., Begriche, Y., Khatoun, R., Khoukhi, L., Gaiti, D..  2015.  Flooding attacks detection in MANETs. 2015 International Conference on Cyber Security of Smart Cities, Industrial Control System and Communications (SSIC). :1–6.

Flooding attacks are well-known security threats that can lead to a denial of service (DoS) in computer networks. These attacks consist of an excessive traffic generation, by which an attacker aim to disrupt or interrupt some services in the network. The impact of flooding attacks is not just about some nodes, it can be also the whole network. Many routing protocols are vulnerable to these attacks, especially those using reactive mechanism of route discovery, like AODV. In this paper, we propose a statistical approach to defense against RREQ flooding attacks in MANETs. Our detection mechanism can be applied on AODV-based ad hoc networks. Simulation results prove that these attacks can be detected with a low rate of false alerts.

Alanazi, S., Al-Muhtadi, J., Derhab, A., Saleem, K., AlRomi, A. N., Alholaibah, H. S., Rodrigues, J. J. P. C..  2015.  On resilience of Wireless Mesh routing protocol against DoS attacks in IoT-based ambient assisted living applications. 2015 17th International Conference on E-health Networking, Application Services (HealthCom). :205–210.

The future of ambient assisted living (AAL) especially eHealthcare almost depends on the smart objects that are part of the Internet of things (IoT). In our AAL scenario, these objects collect and transfer real-time information about the patients to the hospital server with the help of Wireless Mesh Network (WMN). Due to the multi-hop nature of mesh networks, it is possible for an adversary to reroute the network traffic via many denial of service (DoS) attacks, and hence affect the correct functionality of the mesh routing protocol. In this paper, based on a comparative study, we choose the most suitable secure mesh routing protocol for IoT-based AAL applications. Then, we analyze the resilience of this protocol against DoS attacks. Focusing on the hello flooding attack, the protocol is simulated and analyzed in terms of data packet delivery ratio, delay, and throughput. Simulation results show that the chosen protocol is totally resilient against DoS attack and can be one of the best candidates for secure routing in IoT-based AAL applications.

2017-02-21
M. Moradi, F. Qian, Q. Xu, Z. M. Mao, D. Bethea, M. K. Reiter.  2015.  "Caesar: high-speed and memory-efficient forwarding engine for future internet architecture". 2015 ACM/IEEE Symposium on Architectures for Networking and Communications Systems (ANCS). :171-182.

In response to the critical challenges of the current Internet architecture and its protocols, a set of so-called clean slate designs has been proposed. Common among them is an addressing scheme that separates location and identity with self-certifying, flat and non-aggregatable address components. Each component is long, reaching a few kilobits, and would consume an amount of fast memory in data plane devices (e.g., routers) that is far beyond existing capacities. To address this challenge, we present Caesar, a high-speed and length-agnostic forwarding engine for future border routers, performing most of the lookups within three fast memory accesses. To compress forwarding states, Caesar constructs scalable and reliable Bloom filters in Ternary Content Addressable Memory (TCAM). To guarantee correctness, Caesar detects false positives at high speed and develops a blacklisting approach to handling them. In addition, we optimize our design by introducing a hashing scheme that reduces the number of hash computations from k to log(k) per lookup based on hash coding theory. We handle routing updates while keeping filters highly utilized in address removals. We perform extensive analysis and simulations using real traffic and routing traces to demonstrate the benefits of our design. Our evaluation shows that Caesar is more energy-efficient and less expensive (in terms of total cost) compared to optimized IPv6 TCAM-based solutions by up to 67% and 43% respectively. In addition, the total cost of our design is approximately the same for various address lengths.

Wensheng Chen, Hui Li, Jun Lu, Chaoqi Yu, Fuxing Chen.  2015.  "Routing in the Centralized Identifier Network". 2015 10th International Conference on Communications and Networking in China (ChinaCom). :73-78.

We propose a clean-slate network architecture called Centralized Identifier Network (CIN) which jointly considers the ideas of both control plane/forwarding plane separation and identifier/locator separation. In such an architecture, a controller cluster is designed to perform routers' link states gathering and routing calculation/handing out. Meanwhile, a tailor-made router without routing calculation function is designed to forward packets and communicate with its controller. Furthermore, A router or a host owns a globally unique ID and a host should be registered to a router whose ID will be the host's location. Control plane/forwarding plane separation enables CIN easily re-splitting the network functions into finer optional building blocks for sufficient flexibility and adaptability. Identifier/locator separation helps CIN deal with serious scaling problems and offer support for host mobility. This article mainly shows the routing mechanism of CIN. Furthermore, numerical results are presented to demonstrate the performance of the proposed mechanism.

2017-02-14
K. Sakai, M. T. Sun, W. S. Ku, J. Wu, T. H. Lai.  2015.  "Multi-path Based Avoidance Routing in Wireless Networks". 2015 IEEE 35th International Conference on Distributed Computing Systems. :706-715.

The speedy advancement in computer hardware has caused data encryption to no longer be a 100% safe solution for secure communications. To battle with adversaries, a countermeasure is to avoid message routing through certain insecure areas, e.g., Malicious countries and nodes. To this end, avoidance routing has been proposed over the past few years. However, the existing avoidance protocols are single-path-based, which means that there must be a safe path such that no adversary is in the proximity of the whole path. This condition is difficult to satisfy. As a result, routing opportunities based on the existing avoidance schemes are limited. To tackle this issue, we propose an avoidance routing framework, namely Multi-Path Avoidance Routing (MPAR). In our approach, a source node first encodes a message into k different pieces, and each piece is sent via k different paths. The destination can assemble the original message easily, while an adversary cannot recover the original message unless she obtains all the pieces. We prove that the coding scheme achieves perfect secrecy against eavesdropping under the condition that an adversary has incomplete information regarding the message. The simulation results validate that the proposed MPAR protocol achieves its design goals.

V. Mishra, K. Choudhary, S. Maheshwari.  2015.  "Video Streaming Using Dual-Channel Dual-Path Routing to Prevent Packet Copy Attack". 2015 IEEE International Conference on Computational Intelligence Communication Technology. :645-650.

The video streaming between the sender and the receiver involves multiple unsecured hops where the video data can be illegally copied if the nodes run malicious forwarding logic. This paper introduces a novel method to stream video data through dual channels using dual data paths. The frames' pixels are also scrambled. The video frames are divided into two frame streams. At the receiver side video is re-constructed and played for a limited time period. As soon as small chunk of merged video is played, it is deleted from video buffer. The approach has been tried to formalize and initial simulation has been done over MATLAB. Preliminary results are optimistic and a refined approach may lead to a formal designing of network layer routing protocol with corrections in transport layer.

2015-12-07
Wei Liu, Ming Yu.  2014.  AASR: Authenticated Anonymous Secure Routing for MANETs in Adversarial Environments. Vehicular Technology, IEEE Transactions on. 63:4585-4593.

Anonymous communications are important for many of the applications of mobile ad hoc networks (MANETs) deployed in adversary environments. A major requirement on the network is the ability to provide unidentifiability and unlinkability for mobile nodes and their traffic. Although a number of anonymous secure routing protocols have been proposed, the requirement is not fully satisfied. The existing protocols are vulnerable to the attacks of fake routing packets or denial-of-service broadcasting, even the node identities are protected by pseudonyms. In this paper, we propose a new routing protocol, i.e., authenticated anonymous secure routing (AASR), to satisfy the requirement and defend against the attacks. More specifically, the route request packets are authenticated by a group signature, to defend against potential active attacks without unveiling the node identities. The key-encrypted onion routing with a route secret verification message is designed to prevent intermediate nodes from inferring a real destination. Simulation results have demonstrated the effectiveness of the proposed AASR protocol with improved performance as compared with the existing protocols.

2015-05-06
Verbeek, F., Schmaltz, J..  2014.  A Decision Procedure for Deadlock-Free Routing in Wormhole Networks. Parallel and Distributed Systems, IEEE Transactions on. 25:1935-1944.

Deadlock freedom is a key challenge in the design of communication networks. Wormhole switching is a popular switching technique, which is also prone to deadlocks. Deadlock analysis of routing functions is a manual and complex task. We propose an algorithm that automatically proves routing functions deadlock-free or outputs a minimal counter-example explaining the source of the deadlock. Our algorithm is the first to automatically check a necessary and sufficient condition for deadlock-free routing. We illustrate its efficiency in a complex adaptive routing function for torus topologies. Results are encouraging. Deciding deadlock freedom is co-NP-Complete for wormhole networks. Nevertheless, our tool proves a 13 × 13 torus deadlock-free within seconds. Finding minimal deadlocks is more difficult. Our tool needs four minutes to find a minimal deadlock in a 11 × 11 torus while it needs nine hours for a 12 × 12 network.

Stephens, B., Cox, A.L., Singla, A., Carter, J., Dixon, C., Felter, W..  2014.  Practical DCB for improved data center networks. INFOCOM, 2014 Proceedings IEEE. :1824-1832.

Storage area networking is driving commodity data center switches to support lossless Ethernet (DCB). Unfortunately, to enable DCB for all traffic on arbitrary network topologies, we must address several problems that can arise in lossless networks, e.g., large buffering delays, unfairness, head of line blocking, and deadlock. We propose TCP-Bolt, a TCP variant that not only addresses the first three problems but reduces flow completion times by as much as 70%. We also introduce a simple, practical deadlock-free routing scheme that eliminates deadlock while achieving aggregate network throughput within 15% of ECMP routing. This small compromise in potential routing capacity is well worth the gains in flow completion time. We note that our results on deadlock-free routing are also of independent interest to the storage area networking community. Further, as our hardware testbed illustrates, these gains are achievable today, without hardware changes to switches or NICs.