Biblio
Smart mobile devices such as smartphones and tablets have become an integral part of our society. However, it also becomes a prime target for attackers with malicious intents. There have been a number of efforts on developing innovative courseware to promote cybersecurity education and to improve student learning; however, hands-on labs are not well developed for smart mobile devices and for mobile security topics. In this paper, we propose to design and develop a mobile security labware with smart mobile devices to promote the cybersecurity education. The integration of mobile computing technologies and smart devices into cybersecurity education will connect the education to leading-edge information technologies, motivate and engage students in security learning, fill in the gap with IT industry need, and help faculties build expertise on mobile computing. In addition, the hands-on experience with mobile app development will promote student learning and supply them with a better understanding of security knowledge not only in classical security domains but also in the emerging mobile security areas.
Electronic voting systems have enhanced efficiency in student elections management in universities, supporting such elections to become less expensive, logistically simple, with higher accuracy levels as compared to manually conducted elections. However, e-voting systems that are confined to campus hall voting inhibits access to eligible voters who are away from campus. This study examined the challenges of lack of wide access and impersonation of voter in the student elections of 2018 in Kabarak University. The main objective of this study was therefore to upgrade the offline electronic voting system through developing a secure online voting system and deploying the system for use in the 2019 student elections at Kabarak University. The resultant system and development process employed demonstrate the applicability of a secure online voting not only in the higher education context, but also in other democracies where infusion of online access and authentication in the voting processes is a requisite.
The reality of today's computing landscape already suffers from a shortage of cybersecurity professionals, and this gap only expected to grow. We need to generate interest in this STEM topic early in our student's careers and provide teachers the resources they need to succeed in addressing this gap. To address this shortfall we present Practical LAbs in Security for Mobile Applications (PLASMA), a public set of educational security labs to enable instruction in creation of secure Android apps. These labs include example vulnerable applications, information about each vulnerability, steps for how to repair the vulnerabilities, and information about how to confirm that the vulnerability has been properly repaired. Our goal is for instructors to use these activities in their mobile, security, and general computing courses ranging from secondary school to university settings. Another goal of this project is to foster interest in security and computing through demonstrating its importance. Initial feedback demonstrates the labs' positive effects in enhancing student interest in cybersecurity and acclaim from instructors. All project activities may be found on the project website: http://www.TeachingMobileSecurity.com
This innovative practice paper considers the heightening awareness of the need for cybersecurity programs in light of several well publicized cyber-attacks in recent years. An examination of the academic job market reveals that a significant number of institutions are looking to hire new faculty in the area of cybersecurity. Additionally, a growing number of universities are starting to offer courses, certifications and degrees in cybersecurity. Other recent activity includes the development of a model cybersecurity curriculum and the creation of a program accreditation criteria for cybersecurity through ABET. This sudden and significant growth in demand for cybersecurity expertise has some similarities to the significant demand for networking faculty that Computer Science programs experienced in the late 1980s as a result of the rise of the Internet. This paper examines the resources necessary to respond to the demand for cybersecurity courses and programs and draws some parallels and distinctions to the demand for networking faculty over 25 years ago. Faculty and administration are faced with a plethora of questions to answer as they approach this problem: What degree and courses to offer, what certifications to consider, which curriculum to incorporate and how to deliver the material (online, faceto-face, or something in-between)? However, the most pressing question in today's fiscal climate in higher education is: what resources will it take to deliver a cybersecurity program?
The search for alternative delivery modes to teaching has been one of the pressing concerns of numerous educational institutions. One key innovation to improve teaching and learning is e-learning which has undergone enormous improvements. From its focus on text-based environment, it has evolved into Virtual Learning Environments (VLEs) which provide more stimulating and immersive experiences among learners and educators. An example of VLEs is the virtual world which is an emerging educational platform among universities worldwide. One very interesting topic that can be taught using the virtual world is cybersecurity. Simulating cybersecurity in the virtual world may give a realistic experience to students which can be hardly achieved by classroom teaching. To date, there are quite a number of studies focused on cybersecurity awareness and cybersecurity behavior. But none has focused looking into the effect of digital simulation in the virtual world, as a new educational platform, in the cybersecurity attitude of the students. It is in this regard that this study has been conducted by designing simulation in the virtual world lessons that teaches the five aspects of cybersecurity namely; malware, phishing, social engineering, password usage and online scam, which are the most common cybersecurity issues. The study sought to examine the effect of this digital simulation design in the cybersecurity knowledge and attitude of the students. The result of the study ascertains that students exposed under simulation in the virtual world have a greater positive change in cybersecurity knowledge and attitude than their counterparts.
In this paper, we propose a cybersecurity exercise system in a virtual computer environment. The human resource development for security fields is an urgent issue because of the threat of cyber-attacks, recently, is increasing, many incidents occurring, but there is a not enough security personnel to respond. Some universities and companies are conducting education using a commercial training system on the market. However, built and operates the training system is expensive, therefore difficult to use in higher education institutions and SMEs. However, to build and operates, the training system needs high cost, thus difficult to use in higher education institutions and SMEs. For this reason, we developed the CyExec: a cybersecurity exercise system consisting of a virtual computer environment using VirtualBox and Docker. We also implemented the WebGoat that is an OSS vulnerability diagnosis and learning program on the CyExec and developed an attack and defense exercise program.
The need for cybersecurity knowledge and skills is constantly growing as our lives become more integrated with the digital world. In order to meet this demand, educational institutions must continue to innovate within the field of cybersecurity education and make this educational process as effective and efficient as possible. We seek to accomplish this goal by taking an existing cybersecurity educational technology and adding automated grading and assessment functionality to it. This will reduce costs and maximize scalability by reducing or even eliminating the need for human graders.
The spotlight is on cybersecurity education programs to develop a qualified cybersecurity workforce to meet the demand of the professional field. The ACM CCECC (Committee for Computing Education in Community Colleges) is leading the creation of a set of guidelines for associate degree cybersecurity programs called Cyber2yr, formerly known as CSEC2Y. A task force of community college educators have created a student competency focused curriculum that will serve as a global cybersecurity guide for applied (AAS) and transfer (AS) degree programs to develop a knowledgeable and capable associate level cybersecurity workforce. Based on the importance of the Cyber2yr work; ABET a nonprofit, non-governmental agency that accredits computing programs has created accreditation criteria for two-year cybersecurity programs.
Cybersecurity competitions have been shown to be an effective approach for promoting student engagement through active learning in cybersecurity. Players can gain hands-on experience in puzzle-based or capture-the-flag type tasks that promote learning. However, novice players with limited prior knowledge in cybersecurity usually found difficult to have a clue to solve a problem and get frustrated at the early stage. To enhance student engagement, it is important to study the experiences of novices to better understand their learning needs. To achieve this goal, we conducted a 4-month longitudinal case study which involves 11 undergraduate students participating in a college-level cybersecurity competition, National Cyber League (NCL) competition. The competition includes two individual games and one team game. Questionnaires and in-person interviews were conducted before and after each game to collect the players' feedback on their experience, learning challenges and needs, and information about their motivation, interests and confidence level. The collected data demonstrate that the primary concern going into these competitions stemmed from a lack of knowledge regarding cybersecurity concepts and tools. Players' interests and confidence can be increased by going through systematic training.
In previous multi-authority key-policy attribute-based Encryption (KP-ABE) schemes, either a super power central authority (CA) exists, or multiple attribute authorities (AAs) must collaborate in initializing the system. In addition, those schemes are proved security in the selective model. In this paper, we propose a new fully secure decentralized KP-ABE scheme, where no CA exists and there is no cooperation between any AAs. To become an AA, a participant needs to create and publish its public parameters. All the user's private keys will be linked with his unique global identifier (GID). The proposed scheme supports any monotonic access structure which can be expressed by a linear secret sharing scheme (LSSS). We prove the full security of our scheme in the standard model. Our scheme is also secure against at most F-1 AAs corruption, where F is the number of AAs in the system. The efficiency of our scheme is almost as well as that of the underlying fully secure single-authority KP-ABE system.
It can get the user's privacy and home energy use information by analyzing the user's electrical load information in smart grid, and this is an area of concern. A rechargeable battery may be used in the home network to protect user's privacy. In this paper, the battery can neither charge nor discharge, and the power of battery is adjustable, at the same time, we model the real user's electrical load information and the battery power information and the recorded electrical power of smart meters which are processed with discrete way. Then we put forward a heuristic algorithm which can make the rate of information leakage less than existing solutions. We use statistical methods to protect user's privacy, the theoretical analysis and the examples show that our solution makes the scene design more reasonable and is more effective than existing solutions to avoid the leakage of the privacy.
In today's interconnected world, universities recognize the importance of protecting their information assets from internal and external threats. Being the possible insider threats to Information Security, employees are often coined as the weakest link. Both employees and organizations should be aware of this raising challenge. Understanding staff perception of compliance behaviour is critical for universities wanting to leverage their staff capabilities to mitigate Information Security risks. Therefore, this research seeks to get insights into staff perception based on factors adopted from several theories by using proposed constructs i.e. "perceived" practices/policies and "perceived" intention to comply. Drawing from the General Deterrence Theory, Protection Motivation Theory, Theory of Planned Behaviour and Information Reinforcement, within the context of Palestine universities, this paper integrates staff awareness of Information Security Policies (ISP) countermeasures as antecedents to ``perceived'' influencing factors (perceived sanctions, perceived rewards, perceived coping appraisal, and perceived information reinforcement). The empirical study is designed to follow a quantitative research approaches, use survey as a data collection method and questionnaires as the research instruments. Partial least squares structural equation modelling is used to inspect the reliability and validity of the measurement model and hypotheses testing for the structural model. The research covers ISP awareness among staff and seeks to assert that information security is the responsibility of all academic and administrative staff from all departments. Overall, our pilot study findings seem promising, and we found strong support for our theoretical model.
eAssessment uses technology to support online evaluation of students' knowledge and skills. However, challenging problems must be addressed such as trustworthiness among students and teachers in blended and online settings. The TeSLA system proposes an innovative solution to guarantee correct authentication of students and to prove the authorship of their assessment tasks. Technologically, the system is based on the integration of five instruments: face recognition, voice recognition, keystroke dynamics, forensic analysis, and plagiarism. The paper aims to analyze and compare the results achieved after the second pilot performed in an online and a blended university revealing the realization of trust-driven solutions for eAssessment.
Institutions use the information security (InfoSec) policy document as a set of rules and guidelines to govern the use of the institutional information resources. However, a common problem is that these policies are often not followed or complied with. This study explores the extent to which the problem lies with the policy documents themselves. The InfoSec policies are documented in the natural languages, which are prone to ambiguity and misinterpretation. Subsequently such policies may be ambiguous, thereby making it hard, if not impossible for users to comply with. A case study approach with a content analysis was conducted. The research explores the extent of the problem by using a case study of an educational institution in South Africa.
As the centers of knowledge, discovery, and intellectual exploration, US universities provide appealing cybersecurity targets. Cyberattack origin patterns and relationships are not evident until data is visualized in maps and tested with statistical models. The current cybersecurity threat detection software utilized by University of North Florida's IT department records large amounts of attacks and attempted intrusions by the minute. This paper presents GIS mapping and spatial analysis of cybersecurity attacks on UNF. First, locations of cyberattack origins were detected by geographic Internet Protocol (GEO-IP) software. Second, GIS was used to map the cyberattack origin locations. Third, we used advanced spatial statistical analysis functions (exploratory spatial data analysis and spatial point pattern analysis) and R software to explore cyberattack patterns. The spatial perspective we promote is novel because there are few studies employing location analytics and spatial statistics in cyber-attack detection and prevention research.